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ABSTRACT Many physical processes display complex high-dimensional time-varying behavior, from
global weather patterns to brain activity. An outstanding challenge is to express high dimensional
data in terms of a dynamical model that reveals their spatiotemporal structure. Dynamic Mode
Decomposition is a means to achieve this goal, allowing the identification of key spatiotemporal
modes through the diagonalization of a finite dimensional approximation of the Koopman operator.
However, DMD methods apply best to time-translationally invariant or stationary data, while
in many typical cases, dynamics vary across time and conditions. To capture this temporal
evolution, we developed a method, Non-Stationary Dynamic Mode Decomposition (NS-DMD),
that generalizes DMD by fitting global modulations of drifting spatiotemporal modes. This method
accurately predicts the temporal evolution of modes in simulations and recovers previously known
results from simpler methods. To demonstrate its properties, the method is applied to multi-channel
recordings from an awake behaving non-human primate performing a cognitive task.

INDEX TERMS dynamic mode decomposition, non-stationary methods, multi-variate time-series,
data-driven modeling, computational neuroscience

I. INTRODUCTION
Data-driven models of spatio-temporal systems are crit-
ical to understanding the evolution dynamics of natural
systems and have become especially valuable given the
increasing prevalence of large-scale measurements across
all scientific disciplines. Many methods have been in-
troduced to derive approximate dynamical models from
data in domains such as fluid flows [39], climate systems
[45, 1] and brain activity [53, 65, 25]. However, in many
data-driven approaches and algorithms, the data are
assumed to be stationary when fitting the data. The
stationarity assumption is violated in many datasets of
interest, thus limiting potential model accuracy and fore-
casting capabilities. Deriving non-stationary generaliza-
tions of data-driven modeling is an area of active interest
(e.g. [22, 32, 35]). We add to this effort by proposing
a new method, Non-Stationary Dynamic Mode Decom-
position (NS-DMD), which explicitly approximates the
non-stationarity of the data while simultaneously con-

structing a low dimensional linear DMD approximation
of multi-variate time-series.

NS-DMD builds on Dynamic Mode Decomposition
(DMD) [51, 31], a systematic and unbiased method to
reduce high-dimensional time-series data to a set of spa-
tiotemporal modes. DMD approximates the Koopman
operator [49], a linear infinite dimensional operator
whose eigendecomposition models the observables that
describe a finite dimensional, potentially non-linear, dy-
namical system [30, 5, 56]. In short, DMD approximates
the data x(t) as

x(t) ≈
r∑
k

bkϕkeωkt, (1)

where the ϕk are the DMD modes, ω are the DMD
eigenvalues and bk determines the weight of each mode.
The limitation of such an approach is the assumption of
stationarity of the data. Simulated datasets of particu-
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lar interest (Fig. 1(A)) are poorly reconstructed with
stationary approaches (Fig. 1(B)) due to the spatial
mixture of time-varying modes with time-varying am-
plitudes in the data. NS-DMD improves upon DMD by
including time-dependence of the modes:

x(t) ≈
r∑
k

bk(t)ϕk(t)eωk(t)t. (2)

The additional time dependence in NS-DMD allows for
accurate reconstruction of the underlying data (Fig.
1(C)). Further details on the NS-DMD method are found
in Sec. II-B.

Many approaches exist to fit non-stationary systems
[15, 6, 59, 16, 12, 17, 8, 23, 22, 57, 28, 35, 32, 9, 41], but
the approaches do not find representations in the form
of Eq. 2. Related work is discussed in Sec. IV-A.

As with many other methods, NS-DMD assumes that
the data are stationary in small time windows. We
further assume that the data contain a low dimensional
set of spectral components which may vary slowly with
respect to their frequency. However, in contrast to pre-
vious methods, NS-DMD subsequently takes advantage
of machine learning methods to associate modes across
time windows, while systematically eliminating overfit
and redundant modes. This allows us to detect global
modulations of spatiotemporal modes that gradually
drift across time.

We validate NS-DMD on synthetic data from sev-
eral non-stationary systems. We then demonstrate its
practical utility by analyzing multi-channel neuroscience
time-series data. NS-DMD is able to recapitulate results
found using other more traditional time-series analy-
sis methods, but also identifies non-stationary modes
in these time-series data. We further demonstrate the
utility by applying NS-DMD to sea surface temperature
data, where NS-DMD recovers seasonal effects along
with modes specific to the El Niño phenomena. Taken
together, the novel findings and the connection to pre-
vious methods demonstrate the promise of NS-DMD for
the analysis of non-stationary data.

II. METHODS
NOTATION
We follow the notation in [29]. Scalars are denoted by
lowercase letters (s), vectors by bold lowercase letters
(v), matrices by bold capital letters (M), and tensors of
third order by calligraphic bold letters (T ). In summary:

• vi denotes the ith entry of v;
• mij denotes element (i, j) in M;
• tijk denotes element (i, j, k) in T ;
• mi: and m:j denote the ith row and jth column of

M;
• More compactly, mj ≡ m:j, denotes the jth column

of M;
• tij:, ti:k, and t:jk denote the vectors given by the

corresponding free dimension of T ;

• Ti::, T:j:, and T::k denote the matrices given by the
corresponding free dimensions of T ;

• More compactly, Tk ≡ T::k denotes the kth frontal
slice;

• The nth element in a sequence is denoted by a
superscript in parenthesis; e.g. M(n) is the nth
matrix M.

A. DYNAMIC MODE DECOMPOSITION

Dynamic Mode Decomposition (DMD) [31] forms the
backbone of NS-DMD. DMD approximates a low-
dimensional representation of the data X in terms of
linearly (exponential) evolving spatial modes (Eq. 1).
That is, at fixed frequencies given by Im(ωk), there
are spatial modes ϕk with loadings bk that exponen-
tially grow or decay. DMD is thought to combine the
strengths of singular value decomposition across space
with Fourier transforms across time.

There have been many improvements made to DMD
since the original algorithm was introduced in 2008 [51],
including a number of regression techniques for estimat-
ing the best fit linear dynamics [61, 2, 50, 63, 32, 44].
We build NS-DMD upon Optimized DMD (OPT-DMD)
[2], which estimates the DMD modes and eigenvalues by
using a variable projection optimization scheme

argminωk,ϕk,bk

∥∥∥∥∥X−
r∑

k=1

bkϕk exp(ωkt)

∥∥∥∥∥ (3)

where a rank r approximation is estimated. Optimized
DMD iterates to a solution of this non-convex problem
by using variable projection [18]. To improve conver-
gence capabilities, often the exact DMD algorithm can
be used as a seed for the initialization of the DMD
algorithm. The OPT-DMD framework has been found
to be the most robust algorithm to noise [2], providing
an unbiased estimate of the DMD modes and eigenvalues
for real data.

B. NON-STATIONARY DYNAMIC MODE DECOMPOSITION

For a data matrix X ∈ RN×M , DMD aims to accurately
represent the data with a low dimensional set of K spa-
tiotemporal modes S ∈ RN×K×M as given by Eq. (3).
When the governing processes vary in time, the set of
spatiotemporal modes that best describe the data at one
point in time may not describe the data well at another
point in time. Furthermore, nonlinear dynamical sys-
tems may be better described locally by different linear
approximations in different regions of phase space. We
postulate that there are common dynamical modes that
recur throughout an extended dataset. The goal of NS-
DMD is to find these recurring modes and weight their
amplitude with time-dependent functions F ∈ RK×M

that characterize the time-varying contribution of each
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FIGURE 1: (A) The spatial distribution |ϕk| and global amplitude fk(t) of a simulated dataset, originating from the
form x(t) =

∑
k ϕk(t) exp

(
i
∫ t
t0
ωk(t)dt

)
fk(t). The frequencies ω(t) are 20 Hz (red mode) and 30 Hz (green mode).

The spatial modes mix together at the same time with varying amplitudes. The red modes spatial distribution
fluctuates while the green mode turns on and off with irregular amplitudes. OPT-DMD fails to recover the original
modes (B). NS-DMD samples the data with OPT-DMD during different time intervals, where dynamics are combined
to find a subset of modes with modulating amplitude to reconstruct the data. NS-DMD recovers the original modes
(C). Further exploration of NS-DMD and OPT-DMD on non-stationary datasets is shown in Fig. 3.

mode to a reconstruction of the data. Thus, NS-DMD
seeks to approximate the data at any snapshot tj with

xj ≈
∑
k

s:kjfkj. (4)

To approximate S, a common approach [22, 32,
41, 4] is to split the data X of length M into W
short overlapping windows of length P < M, X̃(w) ∈
RN×P, defined by the corresponding set of time points
t(w) = {t(w)

1 , t(w)
2 , ...t(w)

P }. The processes governing the
dynamical systems are assumed to be approximately
stationary in each window, an assumption that is valid
depending on the size of the window. If the size is too
large, then the stationarity assumption is likely false. If
the size is too small, there is a lack of statistical sampling
to find reasonable solutions that may not generalize well
across time. For example, in the limit of two snapshots,
it is unlikely for modes to generalize to any another
snapshots.

The data of each window are extracted with OPT-
DMD [2], an iterative algorithm that finds r modes
per window, where r is a chosen hyperparameter. For
the first sampled window X̃(1), OPT-DMD is executed
without initial conditions or with educated guesses;
OPT-DMD can automatically determine an initial guess
if needed [2, 31]. For sampling windows w > 1,
OPT-DMD is initialized with the normalized eigenvalues
Λ(w−1)/|Λ(w−1)| from the previous window, a process
that favors spatiotemporal smoothness.

Having determined modes Φ(w) ∈ CN×r, Λ(w) ∈ Cr×r,
and b(w) ∈ Rr, local to every window w, the goal is
to identify a set of modes that apply across the full M

length dataset. A visual description of this process is
shown in Fig. 2 (a). Formally, similar spatiotemporal
modes are grouped into K groups across consecutive
windows w̃ = {w,w + 1, ...w + nk − 1}, a process
defined and explained in Sec. II-B2. We write this as
Θ̃(k), where each Θ̃(k) contains a variable number nk of
modes {θ(w), θ(w+1), θ(w+nk−1)}, and Θ is a placeholder
for Φ, Λ, b, and t. To find time dependent quantities
θ
(k)
j = h(Θ̃(k)) at time tj, the function h averages
Θ̃(k) during overlapping windows and extrapolates Θ̃(k)

outside the range of t(k):

θ
(k)
j =


1
N
∑

i∈w̃:tj∈t(i) θ
(i) t(w)

1 ≤ tj ≤ t(w+nk−1)
P

θ(w) tj < t(w)
1

θ(w+nk−1) tj > t(w+nk−1)
P ,

(5)

where N refers to the number of summed terms. We use a
notation where i ∈ w̃ : tj ∈ t(i) indicates all elements i ∈
w̃ such that tj ∈ t(i). A visualization of the function h is
shown in Fig. 2 (b). The application of h leads to |ϕ:kj| =
h(|Φ̃(k)|) and ωkkj = h(∠Λ̃(k)). The angular part of Φ(w)

defines the phase of every channel at the start of the
respective window. To find ∠ϕ:kj, the phases are aligned
to the start of the full dataset. For a mode k and window
wi, the phase is ∠ϕ′(w)

k ≡ ∠ϕ(w)
k −

∑i−1
j=1 ωkkj., and the

phase at any time is ∠ϕ′
:kj = h(∠ϕ̃′(w)

k ). To gain greater
temporal smoothness, one can apply a moving average
to the time dependent modes. The k time dependent
spatiotemporal modes form the matrices Φj ∈ CN×K

and ∠Λj ∈ CK×K for every time point tj. With the
time dependent modes, the spatiotemporal modes S ∈
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RN×K×M are:

Sj ≡ Re(Φjei
∑j−1

i=1 ∠Λi), (6)

where the real part of each mode recovers the complex
conjugate pairs in the definition of Sj.
S is weighted with an unknown temporal modulation

F ∈ RK×M . A visualization of F is shown in Fig. 2(C).
The time-series is reconstructed with

x̂j =
∑
k

s:kjfkj, (7)

where the vectors x̂j form the estimated data matrix
X̂ ∈ RN×M . To solve for F, we use gradient descent
(Sec. II-B1). An alternate, "exact" method is proposed
in the supplementary text (Sec. S1-A), which aims to
directly solve Eq. 7. However, this method tends to be
noisier than gradient descent.

1) Fitting Time-Varying Modes with Gradient Descent
Constraints are needed before applying gradient descent
to find F. First, F is non-negative; assemblies are either
"on" with some variable amplitude, or they are "off."
Second, a sparsity constraint is added since S may
contain redundant modes. Lastly, F is continuous since
we assume that modes turn on or off on the timescale
defined by the sampling rate 1/sr = ∆t.

The following loss function satisfies these constraints
on F:

L =
1

2

∣∣∣∣∣∣X̂−X
∣∣∣∣∣∣2

F
+ α

∑
k,j

|fkj|

+
β

2

N∑
l=−N

∑
k,j

(fk,j − fk,j+l)
2
.

(8)

The first term is a standard least-squares loss term on
the reconstruction of the data given F. The α term
enforces sparsity in the solutions of F. The absolute
value will be dropped since F is forced to be non-
negative after every iteration of gradient descent. Lastly,
the β term enforces continuity across time; β controls
the degree of smoothing, and the smoothing timescale
is controlled by N. For simplicity, β is fixed for each l,
although in principle β can fluctuate.

The gradient of F for each mode k and snapshot tj is

dL
dfkj

= (x̂j − xj)s:kj + α+ β

N∑
l=−N

(fk,j − fk,j+l). (9)

Finally, this allows us to compute the gradient descent
for an iteration i > 1:

F(i) = F(i−1) − γ
dL
dF

(i)

+ γν
dL
dF

(i−1)

, (10)

where γ is the learning rate and ν is the momentum [47].
The initial guess of fkj is found by setting dL

dfkj
= 0 and

solving for α = 0 and fk′ ̸=k,l ̸=0 = 0:

fkj =
xjs:kj

|s:kj|2 + β(2N + 1)
. (11)

To remove noise, the initial guess is lowpass filtered.
After each iteration, all negative values of F are set

to 0, and 2N + 1 consecutive values are averaged to
further control the smoothness of F. F is reflected at the
boundaries. It is possible for edge artifacts to occur when
F > 0, so a minimum of N values should be trimmed at
the boundaries.

After running gradient descent, the average amplitude
of each mode is typically smaller than the true value due
to α, β, and the averaging step. The amplitude, defined
as a ∈ RK , of each mode is adjusted with the least
squares algorithm: xj =

∑
k s:kjakfkj. The amplitude a

is absorbed into F.

2) Feature Selection
Typically, while estimating S, one finds a large number
of redundant modes, even with the sparsity constraint
in gradient descent. We turn to feature selection to
subselect modes.

To combine redundant spatiotemporal modes, the
similarity of pairs Si and Sj ̸=i is determined. The
frequencies, spatial amplitudes, and spatial phases are
all needed to be similar for two modes to be defined
as similar. The difference in frequencies f = ∠λ/(2π)
must be within a desired threshold: |fi − fj ̸=i| < thresh.
The cosine similarity C(A,B) = A·B

|A||B| between spa-
tial amplitudes |ϕ| must be above a desired threshold:
C(|ϕi|, |ϕj ̸=i|) > thresh. The spatial phases ∠ϕ need
to first be aligned since they are referenced to their
window’s initial t0. To align, we define ∆∠ϕ ≡ (∠ϕi +
2πfi∆t/2)−(ϕj ̸=i−2πfj ̸=i∆t/2), where ∆t = t0,j ̸=i−t0,i.
Due to periodicity, all ∆∠ϕ are shifted to within −π to
π. The spatial phase is similar if 1

n
∑n

i ∆∠ϕi < thresh.
The solutions Si and Sj ̸=i are considered similar (i.e.,
redundant) if all three threshold checks are valid.

The first redundant set of modes are found from the
parity of spatiotemporal modes. If the data is suffi-
ciently approximated by sines and cosines, then OPT-
DMD returns pairs of solutions S with opposite signs:
|ϕ|ei∠ϕei∠λti and |ϕ|e−i∠ϕe−i∠λti . The real part of S is
compared between pairs, where one mode is removed per
pair.

Next, the modes from consecutive windows are com-
pared. Since OPT-DMD is computed on each window
using the eigenvalues of the previous window as an
initial guess, the modes typically remain similar across
time unless the assembly drastically changes. In some
cases, the frequency or spatial distribution of modes
may fluctuate over time. A method that is very sensitive
to such changes would generate additional new modes.
Our modeling goal is to have a single mode describe
the fluctuation, so the method needs to be flexible
when the frequency or spatial distribution drifts in time.
This is later tested with great success in Sec. III-A2. If
modes are similar across time, we stitch them together
according to Eq. 6, as described in Sec. II-B.
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FIGURE 2: Flowchart of the NS-DMD algorithm. In (a), a data matrix (first panel) is subdivided into windows.
The number, size, and stride of the windows are hyperparameters. For each window, OPT-DMD is computed with r
modes. The modes are visualized as squares in the second panel, where Θ̃ is a placeholder for the OPT-DMD modes:
Φ and Λ. Modes are deemed similar to each other based on the procedure in Sec. II-B2; similar modes are connected
by dashed lines and have similar colors. Different shades indicate that the modes may not be exactly the same.
Groups of minimum 2 (another hyperparameter) similar modes (third panel) are transformed into continuous modes
across time in the fourth panel via the function h(Θ̃). The function h(Θ̃) is visualized in (b). Similar, but slightly
different modes, are indicated by slightly different colors. For example, the frequency could be 10Hz in window 2,
10.2Hz in window 3, and 10.4Hz in window 4. For overlapping windows, modes are averaged and extended outside
the range of the windows. Following the example, the frequency would be 10.2Hz before window 3 begins, 10.1Hz
during the overlap of windows 2 and 3, 10.3Hz during the overlap of windows 3 and 4, and 10.4Hz for the remainder.
The modes θ(k)(t) comprise the spatiotemporal modes S (see text). Lastly, temporal modulations fk(t) of each mode
Sk are found with gradient descent. fk(t) is visualized in (c), where the colored bars indicate when each mode well
describes the data. fk(t) is flexible and can find gradual changes to the modes (e.g. the green and light blue mode).
Other times, the modes turn on/off rapidly (e.g. the orange, purple, and pink modes). Lastly, the timing is flexible,
indicated by the modes not necessarily turning on/off exactly at the dashed lines.

Next, if desired, one can retain only groups of modes
that have more than a user-defined minimum number
of consecutive similar windows. This enforces that S is
somewhat consistent across time. Then, the reconstruc-
tion error is calculated for each mode independently,
defined as the cosine distance between X and the
reconstruction X̂. The cosine distance is chosen since
it does not depend on the amplitude of each mode.
A user-defined number of modes or any modes with a
reconstruction error above a user-defined threshold are
retained. This drastically reduces the number of modes
to ones that generally reconstruct the data well.

After initially reducing the number of modes, stan-
dard feature selection methods [3] are used to find the
subset of the remaining modes that best reconstruct
the data. The basic feature selection algorithms of
[46] have been implemented. These methods start with
either none or the entire set of modes and add/subtract

one mode at a time while checking the reconstruction
error. We first run gradient descent (Sec. II-B1) while
adding/removing each mode independently. Then, the
mode that decreased the cosine distance the least is
removed. The process is repeated until a final, user
selected number of modes have been added/removed.
The best sub-selection of modes can be chosen from an
“elbow” curve of overall cosine distance as a function of
number of modes.

3) Sampling from a Broad Frequency Range
A dataset may contain a large number of modes at
many different frequencies. Running OPT-DMD with
many modes can be slow and inaccurate if some fre-
quency bands have smaller amplitudes. To compensate,
an additional step to NS-DMD is to bandpass over many
different frequency ranges. Initial guesses of frequencies
should lie within the bandpass ranges, and OPT-DMD is
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computed for each window in each band. Only solutions
where the frequency is within the bandpassed range
are included. All modes from all bandpassed ranges are
combined in the feature selection step. Gradient descent
is ran on the original, non-bandpassed data.

Either a type I Chebyshev filter of order 5 and a pass-
band gain of 1 or a Butterworth filter of order 5 is used
to bandpass filter the data. Due to edge artifacts at the
temporal extremes of the data, it is recommended to
bandpass for a longer time range than of interest and
trim the excess timepoints.

To determine the accuracy of the reconstruction dur-
ing sequential feature selection methods, it’s best to
calculate the reconstruction similarity for each frequency
band:

1

N

N∑
i=1

C(BPi(X),BPi(X̂)), (12)

where BPi(A) is a function that bandpasses the data A
to the ith frequency range. This method of calculating
the reconstruction similarity does not preferentially bias
toward modes that occur with a comparatively large
amplitude.

4) Non-Stationary Dynamic Mode Decomposition Algorithm

Algorithm 1 NS-DMD

0: Input: Input (X, t, sampling rate,hyperparameters)
0: procedure NS-DMD(X, t, sampling rate)
0: Bandpass(X) into bands (Optional)
0: for band and window in bands and windows do
0: Compute Φ, Λ, b with OPT-DMD
0: end for
0: Group consecutive modes if similar
0: Reject groups where size < minimum size (op-

tional)
0: Stitch groups of modes to define S
0: Reject modes with worst reconstruction error (op-

tional)
0: Run forward/backward algorithm to reject modes

(optional)
0: Run gradient descent to get F
0: Trim edge artifacts
0: Find overall amplitude with least squares
0: end procedure=0

We conclude this section by summarizing the full
method. An algorithmic version is given in 1.

• Step 1 (optional): If the data has a large number of
modes or includes modes with a much smaller am-
plitude, we bandpass the data into many different
small bands. To evaluate the necessity, we suggest
analyzing the power spectral density.

• Step 2: Run OPT-DMD for every window of interest
and for every frequency band if applicable.

• Step 3: Find the similarity of consecutive modes.
• Step 4 (optional): Keep only solutions that are

similar for a user defined number of windows.
• Step 5: define S based on the similarity of consec-

utive modes. Optionally include temporal lags for
each recording location.

• Step 6 (optional): Initially reduce the number of
modes by finding the reconstruction error of each
mode independently.

• Step 7 (optional): Run the forward/backward elim-
ination algorithm.

• Step 8: Run gradient descent on the final subset
of modes. Make sure that this is done on the non-
bandpassed data.

• Step 9: trim the data to remove edge artifacts.
• Step 10: use a least squares algorithm to find the

final estimate of F.

III. RESULTS
We tested NS-DMD on simulations, electrophysiological
brain data from multichannel recordings of local field
potentials in the macaque brain, and from sea surface
temperature (SST) data. NS-DMD recovers the under-
lying dynamics in the simulations. In the electrophysio-
logical brain data, we show a rich set of modes that are
active during different periods of performance of a cog-
nitive task. In the SST data, NS-DMD recovers seasonal
modes along with El Niño modes. Hyperparameters are
described for all applications in Appendix B. Further
simulations, which require optional steps of NS-DMD or
are of interest to specific communities, are included in
the supplementary material (Sec. S2).

A. SIMULATIONS
Synthetic data is generated from the following generic
equation:

x(ti) =
∑
k

fk(ti)ϕA,k(ti)

∗ cos(
i−1∑
j=0

ωk(tj)∆t + ϕP,k(ti)),
(13)

where x(t) is the data consisting of a vector of channels,
fk(t) is the amplitude modulation of all channels, ω(t)
is the time varying angular frequency, ϕA,k is the time
varying normalized amplitude (|ϕ| ≡ 1), ϕP,k is the
time varying phase, and ∆t ≡ 0.001 is the time delay
between snapshots. This is the more explicit form of the
simplified form of the data in Eq. 4, which can be seen
by expressing the cosine in terms of exponentials and
combining with ϕA,k to form S.

1) Non-Stationarity in Multiple Assemblies
The simplest case of interest is when multiple assemblies
switch on/off with non-constant amplitudes, correspond-
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FIGURE 3: Multiple assembly simulation. The simulated data, generated from 4 assemblies A-D, is shown in (A).
The frequencies are 4 Hz, 30 Hz, 17 Hz, and 30 Hz respectively. The dotted lines in (D) show the modulation f(t) for
each assembly, and the small solid circles show the amplitude and phase of Φ in (E) and (F). Gaussian noise with
a standard deviation of 0.1 is added independently to each channel and snapshot. (B) shows the reconstruction of
the data with NS-DMD with 4 modes per window. (C) shows the reconstruction with OPT-DMD with a rank of 4,
which had the smallest reconstruction error out of ranks from 2 to 10. (D) compares the true (dotted lines) and fit F
(solid lines) for each mode/assembly. (E) and (F) compares the true (small, solid dots) and fitted (large, transparent
dots) Φ amplitudes and phases for each channel. From this, we see the accuracy of the underlying modes, f(t), and
reconstruction of the data when using NS-DMD with an optimal number of 4 modes per window. The inaccuracy in
the green mode in (F) occurs since the phase is compared at t = 0 ms; the phase is most accurate at t ≈ 2000 ms
when the mode is active, and any small inaccuracy in frequency will grow when analyzing the phase at a large time
difference away. We compare the the true (dotted lines) and fit F (solid lines) when running NS-DMD with 2 (G), 2
and an initial guess of ±30 Hz (H), and 6 (I) modes per window. In general, we find that 2 modes per window fits
lower frequency modes well. Forcing the initial guess to higher frequency modes, as in (H), leads to higher deviations
from the ground truth. Using 6 modes per window, as in (I), leads to overfitting at 2000 ms, which may be expected
due to the similarity of the constructed 30 Hz modes. The reconstructed error for each number of modes per window
is shown in (J), where the error is on the order of the Gaussian noise. The error is worse when using less number
of modes due to an underfitting of the data. The best performance with OPT-DMD is still worse than underfitting
NS-DMD models. Surprisingly, the error is still fairly small considering the blurred reconstruction in (C).
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ing to the following simplification of Eq. 13:

x(ti) =
∑
k

fk(ti)ϕA,k cos(ωkti + ϕP,k). (14)

We construct a group of modes that are active in the
beginning, a group of modes that are active towards the
end, a switching period where multiple modes coexist,
and a mode with non-constant amplitude. The assem-
blies, labeled from A to D, construct the data shown in
Fig. 3A. Assemblies A and B operate with a constant
amplitude for 1700 ms, assembly C turns on with a
constant amplitude at t =1300 ms, and assembly D’s
amplitude follows the shape of a Gaussian distribution
starting at t =1300 ms. All assemblies initiate and decay
with a fixed timescale. The exact shape of F is shown in
Fig. 3D.

The frequency ωk/(2π) is 4 Hz, 30 Hz, 17 Hz, and
30 Hz for modes A-D respectively. Assemblies B and
D have the same frequency, but with different spatial
distributions. For A and B, the spatial amplitude is
ϕ1−50

A,{k=A,B} = 1/N and ϕ51−100
A,{k=A,B} = 2/N, where the

superscript labels the channel number and N is a nor-
malization such that |ϕA,k| = 1. The amplitudes of
assemblies C and D are reversed such that ϕ1−50

A,{k=C,D} =

2/N and ϕ51−100
A,{k=C,D} = 1/N. The exact amplitudes are

shown in Fig. 3E. The spatial phases ϕP,k for every
assembly form ten groups of ten channels. The phases
are constant within each group of channels. Assembly A
has a temporal delay ϕP,k/ωk from 0 ms to 30 ms across
all groups; Assembly B has a delay from -20 ms to 30
ms; Assembly C from 50 ms to 0 ms; and Assembly D
from 30 ms to -10 ms. The phases are shown in Fig. 3F.
Each channel receives independent white noise with a
standard deviation of 0.1.

We run NS-DMD with 4 modes per window, and the
reconstruction of the data is shown in Fig. 3B. The
reconstruction error is

√
MSE ≈ 0.1 (Fig. 3J), the same

as the added noise. Comparing the true and fitted f in
Fig. 3D, NS-DMD recovers the correct mode amplitudes,
including the non-stationary amplitude in assembly D.
The spatial amplitudes and phases in Figs. 3E and 3F
show recovery of the correct underlying modes. Overall,
this simulation shows that NS-DMD can capture the
underlying modes and temporal variations of a non-
stationary linear dynamical system.

In practice one does not know the optimal number of
modes per window. If instead we run NS-DMD with a
smaller number of modes than optimal, 2 per window,
it will only be able to capture half of the modes at any
timestep. Due to the switching of assemblies, we expect
NS-DMD to recover one early assembly (A or B) and
one late assembly (C or D). NS-DMD recovers the 4 Hz
and 17 Hz mode, as shown in Fig. 3G. This occurs due to
the procedure; in the first window after the 4 Hz mode
"turns off," the initial guess with OPT-DMD is still 4
Hz. OPT-DMD then converges to the closest solution,

which happens to be 17 Hz. The reconstruction error
(Fig. 3J), is marginally worse, as expected since only
half of the modes are captured.

If the initial guess for the first window is forced to be
30 Hz, then NS-DMD finds the two 30 Hz modes (Fig.
3H)). NS-DMD performs noticeably worse when finding
F, but it still finds the correct trend. The low amplitude
bias of the 30 Hz mode occurs due to a lack of an
estimated 4 Hz mode, which can bias X to more positive
or negative values for short (< 50 ms) windows. We
verify this by rerunning this model with only assemblies
B and D, where F is found correctly. The reconstruction
error in Fig. 3J indicates a preference for lower frequency
modes.

If we run NS-DMD with 6 modes per window, NS-
DMD recovers 4 modes that reconstruct the data. The
fitted and recovered amplitudes F in Fig. 3I show that
NS-DMD performs well. Around t=2000 ms, both 30
Hz modes have a non-zero f(t) which occurs due to their
similar construction. The reconstruction error is on par
with the amount of noise (Fig. 3J).

Lastly, we run OPT-DMD with ranks ranging from
2 to 10 and find the best performance with a rank
of 4. The reconstruction is shown in Fig. 3C, where
the original structure in the simulated data is blurred.
Despite this, the reconstruction error is fairly small (Fig.
3J). However, the reconstruction error is worse than all
NS-DMD models.

2) Smoothly Varying Time Dependent Modes
We now consider the case of smoothly varying time
dependent modes (Fig. 4A). Allowing a time-varying
frequency corresponds to the following simplification of
Eq. 13:

x(ti) =
∑
k

fk(ti)ϕA,k cos(
i−1∑
j=0

ωk(tj)∆t + ϕP,k). (15)

We simulate three assemblies whose frequencies vary
linearly in time around 17 Hz, 27 Hz and 33 Hz, where
the true frequency ωk/(2π) is shown in Fig. 4C. The
27 Hz assembly occurs early in time while the 33 Hz
assembly occurs late. The 27 Hz assembly appears with
a linearly varying amplitude for the duration of the
dataset. The exact amplitudes f(t) are shown in Fig.
4B.

NS-DMD recovers the correct F (Fig. 4A), and time
dependent frequency (Fig. 4B). Note that the frequency
is undefined when f(t) = 0, indicated in Fig. 4B by
ending the dashed lines.

We next allow for the spatial amplitude to fluctuate
instead, corresponding to the following simplification of
Eq. 13:

x(ti) =
∑
k

fk(ti)ϕA,k(ti) cos(ωkti + ϕP,k). (16)
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FIGURE 4: (A) Synthetic data for the smoothly varying time dependent mode simulation. (B) A comparison of the
true (dotted lines) and fitted F (solid lines) for three assemblies with time dependent frequencies. NS-DMD recovers
the true modulation trends. (C) Comparison of the true frequencies (dotted lines) with the fitted frequencies (solid
lines) for each drifting assembly. Note that when F = 0 for a given mode in (A), the frequency is undefined. While not
shown, we again compare the performance of OPT-DMD to NS-DMD. The reconstruction error is 0.1 for NS-DMD
and ∼ 0.12 for OPT-DMD. Again, the visual features are blurred compared to a visually accurate reconstruction
from NS-DMD.

FIGURE 5: (A) and (D) True spatial amplitude distribution for time dependent spatial modes at 17 Hz and 30
Hz, where channels 1-50 and 51-100 are grouped and vary the same way. (B) and (E) Fitted spatial amplitude
distribution for the 17 Hz and 30 Hz assemblies. (C) and (F) Comparison of the true (dotted) and fitted (solid) mean
ϕ amplitude for channels 1-50 and 51-100. We find that NS-DMD recovers the correct spatial amplitudes ϕA,k, where
the staircase pattern occurs due to the 100 ms stride of NS-DMD. When running OPT-DMD, the reconstruction
error is ∼ 0.12 compared to 0.1 for NS-DMD. The visual features are blurred compared to NS-DMD.
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The frequencies of two assemblies are fixed to 17 Hz
and 30 Hz. The spatial amplitude is shown in Figs. 5A
and 5D respectively, where channels 1-50 and 51-100
are grouped together with the same change in ϕA,k over
time.

NS-DMD recovers the correct spatial amplitudes,
shown in Figs. 5B and 5E with a step like variation due
to discrete windows. To aid visualization, we plot the
average amplitude for each mode and group of channels,
1-50 and 51-100 in Figs. 5C and 5F respectively.

We run OPT-DMD as well for both simulations of
fluctuating frequency and spatial modes. The recon-
struction error is worse for OPT-DMD at about 0.12
compared to 0.1 for NS-DMD. Like in the example in
Fig. 3, the visual features are blurred with OPT-DMD
(not shown), indicating the need for NS-DMD to recover
the correct underlying modes.

B. APPLICATION TO ELECTROPHYSICAL BRAIN DATA
We apply NS-DMD to local field potentials (LFP) [7],
an invasive measurement technique in which electrodes
measure electric potentials deep inside the brain. In
general, the LFP power decays approximately as a power
law, with an exponent between −1 and −2 [24]. A wealth
of literature has found correlations between behavioral
parameters and time-varying power in various frequency
bands of the LFP [21, 54, 27]. Other research suggests
the possibility of cross-frequency coupling [14, 64, 11,
38] as a top-down mechanism of control.

The LFP is typically analyzed using standard time-
series procedures, such as Hilbert or spectrogram anal-
ysis [10, 13], coherence analysis [58], and Granger
Causality [55, 52]. While these methods are useful
for understanding the structure of the data, they do
not lead to a dynamical systems model of the brain.
Others have argued for the use of a Koopman operator
approach [37]. A DMD approach has been applied to
sleep activity [4], revealing sleep spindle networks. Given
its non-stationary spectral properties and the potential
for the application of DMD in analysis of brain activity,
LFP data are a perfect candidate for NS-DMD.

We demonstrate that NS-DMD can find consistent,
repeatable spatial modes that co-activate intermittently
in correspondence with the task. Modes activate and
deactivate in correspondence with task events, and they
cluster in different areas of the brain. Further, some
clusters show consistent phase differences between brain
areas, indicating information flow. NS-DMD is also able
to recover results from standard time-series analysis.

1) Dataset
We apply our methods to LFP data collected in the
Buffalo lab from a macaque monkey performing a vari-
ant of the Wisconsin Card Sorting Test [19]. Out of 4
non-human primates performing the task, two have elec-
trodes (FHC and Alpha Omega) implanted for neural

recordings. A single subject is chosen for analysis and
comparisons between methods. The subject is an adult
female rhesus (Macaca Mulatta), aged 9 with a weight
of 9.1 kg. The subject was headfixed with a titanium
rod in a dimly lit room. The subject was positioned 60
cm away from a 19-inch CRT monitor, with 33 degrees
by 25 degrees of visual angle. Stimuli were presented
on the screen with software (NIMH Cortex). All proce-
dures were carried out in accordance with the National
Institutes of Health guidelines and were approved by the
University of Washington Institutional Animal Care and
Use Committee.

Trials are initialized when the animal fixates on a
cross in the middle of the screen. The monkey must
then choose one correct image out of four simultaneously
presented images based on an uncued rule. The rule is
discovered by trial and error. Each image has one of four
possible shapes, colors, and patterns, and the rewarded
rule is one of the 12 possible visual features. Animals
are rewarded with a juice/chow mixture for 1400 ms if
correct, and given a 5000 ms timeout period if incorrect.
The rule remains fixed across consecutive trials while the
monkey learns it; after 8/8 or 16/20 correct trials, the
rule spontaneously changes.

The LFP is recorded for ∼ 3 hours per session
across several months using 220 electrodes implanted
in multiple locations throughout the brain, including
hippocampus and prefrontal cortex; we focus here on
data from a single day. We ignore 17 electrodes that are
dominated by noise, determined based on an unusually
large amount of 60 Hz wall noise. We neglect trials where
the remaining electrodes experience random artifactual
bursts, or LFP activity that reaches the maximum or
minimum possible recording limit of the electrode. This
leaves us with 896 trials recorded on 203 electrodes to
analyze. NS-DMD is applied to the raw data, normalized
by z-scoring each electrode’s signal in the 1-40 Hz range
independently for each trial.

2) NS-DMD on a Single Trial
We fit NS-DMD on a single trial of the LFP and analyze
the resulting modes. There are non-zero modes during
every section of the task. The amplitude f(t) of up to
10 modes within the 2-7, 12-17, 22-27, and 32-37 Hz
modes are plotted in Fig. 6(A). Other modes exist, but
are not shown for concision. Some modes span very long
stretches of the trial, while others turn on or off relative
to task events. The red mode of the top plot and the
purple mode of the bottom plot of Fig. 6(A) are selected
for further analysis. In Fig. 6(B) and Fig. 6(C) the
spatial amplitudes |ϕ| and phases ∠ϕ are shown for the
red mode (top) and purple mode (bottom). The spatial
amplitude |ϕ| is plotted. The spatial modes showcase
patterns across the brain. In Fig. 6(C), the phases show
significant differences across various areas of the brain,
indicating that some areas lead or lag behind other areas
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FIGURE 6: Example NS-DMD modes for the first trial of the LFP data. (A) shows the mode amplitudes f(t),
separated by frequency ranges: 2-7, 12-17, 22-27, and 32-37 Hz. Some modes persist for long periods of time, such
as the red mode in the top two plots. Other modes persist for short periods of time, emphasizing task intervals,
such as the red modes in the bottom two plots. (B) shows the absolute value of the relevant spatial amplitudes
|ϕ| for the red (top) and purple (bottom) modes. There are large spatial spreads for each mode. (C) shows the
relevant spatial phases ∠ϕ for the red (top) and purple (bottom) modes on a circular color scale. There are clear
divides between the phases of different brain areas, indicating that some areas lead or lag behind others. This is
especially true in the purple mode (bottom), where there is a phase difference between the red and green shaded
regions. Shaded regions emphasize brain regions important for decision making and memory: hippocampus (red) and
prefrontal cortex (green).

in these particular modes.

3) Common NS-DMD Modes in All Trials
We then apply NS-DMD on all trials for 1500 ms after
feedback begins, focusing on the differences between
correct and incorrect trials in the 19-21 Hz frequency
band. We perform k-means clustering [36] on the mean
spatial amplitude |ϕ|, where each "point" in the k-means
algorithm is the average |ϕ| when f(t) > mean(f(t)).
We choose 3 clusters for both “correct" and “incorrect"
modes. We further separate the data by performing
k-means clustering with 3 modes using the temporal
amplitudes F for each previously found group. This
separates the modes into clusters that have distinct
spatial distributions and temporal distributions. We
select three groups out of the nine for both correct and
incorrect trials for plotting.

The average spatial amplitude for each cluster is
shown in Figs. 7A and 7B. Different clusters are asso-
ciated with activity in different channels; some clusters
have large amplitudes in single channels. The average

global modulation f(t) of each “correct"/“incorrect" clus-
ter is shown in Figs. 7C (correct) and 7D (incorrect).
In the correct trials, F separates into early and late
modes. In the incorrect trials, there is a cluster with
a large amplitude 1s after feedback is given. The overall
amplitude of the “incorrect" modes is much larger than
the “correct" modes.

We are interested in the phase difference between each
channel pair, since this is indicative of information flow.
The phase difference is averaged separately across cor-
rect and incorrect trials when f(t) > f(t). We represent
the phase difference θ as a complex vector on the unit
circle and average:

θ =
∑

i

eiθi . (17)

The amplitude of the average phase difference vector
indicates how consistently the two channels are related.
We focus on pairs of electrodes with large amplitudes
where |θ| > 0.4. Significance is calculated from the work
of [20]. For 76 vectors, which is the minimum number of
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FIGURE 7: We group all modes corresponding to correct or incorrect trials into 3 clusters with K-means on the spatial
amplitude (first index in labels). We further group each cluster into 3 additional clusters (second index in labels)
based on f(t) for a total of 9 groups per correct and incorrect trials. 3 groups are selected for plotting, emphasizing
consistent information flow during different periods after feedback. (A) and (B) show the average spatial amplitude
of each cluster for the correct and incorrect clusters. (C) and (D) show the mean global modulations f(t) for each
correct/incorrect cluster. Note that f(t) is averaged over many modes with independent f(t)’s. Thus, local maximums
indicate when some, but not necessarily all, modes are large. (E) and (F) show the average phase difference between
every pair of electrodes for correct/incorrect clusters. We average with Eq. 17, and the phase difference is set to
0 for every channel pair where the average phase amplitude is less than 0.4, corresponding to a p-value less than
3× 10−6. The color limits are from −π/4 to π/4. The largest amount of widespread information flow occurs in the
correct clusters between different brain areas, particularly directly after feedback. There is local flow in cluster 4,2.
Interestingly, there is a similar cluster occurring in both correct (cluster 2,2) and incorrect (cluster 6,3) trials, where
there is similar spatial, temporal, and phase difference activity.

vectors averaged in Fig. 7, a threshold of 0.4 corresponds
to a p-value of 3 × 10−6. The average thresholded
phase differences are shown in Figs. 7E and 7F. The
“correct" clusters have the largest phase differences,
suggestive of information flow between two groups of
channels after correct feedback is given. Cluster 4,2 has
sparse consistent phase differences, which occur during
incorrect trials one second after feedback. There are two
clusters, (2,2) and (6,3), which have very similar average
patterns: they are similar across space and time, and the
phase differences are shared. This shows that a common
pattern emerges for both correct and incorrect trials.

4) Comparison to Standard Analyses
To demonstrate the ability for NS-DMD to recover re-
sults from simpler methods, we compute analysis based
on the Power Spectral Density, Hilbert analysis, and
coherence.

First, for each electrode, we calculate the Power
Spectral Density (PSD) to find the standard power law
decay [7] using the Welch algorithm [62]. This results in
the standard frequency power law in Fig. 8A. For NS-

DMD, we average f(t) across all trials and times within
overlapping 3 Hz frequency bands (Fig. 8B). The power
law is recovered with a similar slope.

Second, we compare NS-DMD to a traditional Hilbert
analysis, where one typically analyzes a frequency band
of interest. We bandpass the data to 27-37 Hz, Hilbert
transform every channel, and take the absolute value
of the resulting signal.We concatenate the trial and
time dimensions, and run Principal Component Analysis
(PCA) to reduce the dimensionality. By averaging the
projection of the data onto the first mode for all cor-
rect/rewarded trials and all incorrect/unrewarded trials,
we find separate phenomena for each trial type (Fig. 8C).

For NS-DMD, we average f(t) across correct and
incorrect trials for all modes that occur within 27 and
37 Hz. We find the same amplitude trends in Fig. 8D,
where a large amplitude occurs in incorrect trials one
second after feedback. The scale is different in Figs. 8C
and 8D due to normalization. The similarity between
overall trends indicates that NS-DMD recovers similar
results to standard Hilbert analyses.

Next, we compare NS-DMD to the phase of the
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FIGURE 8: Comparisons of NS-DMD results with traditional analyses. (A) shows the Power Spectral Density plots
for every electrode along with their mean power law decay. For the NS-DMD modes, (B) shows the average f(t)
for every 3 Hz band along with the slope. NS-DMD finds a similar, but mildly different, power law decay to (A).
After bandpassing and Hilbert transforming the data between 27 and 37 Hz, (C) shows the first PCA mode after
feedback begins at t = 0 ms. For NS-DMD, (D) shows the mean f(t) for all modes between 27 and 37 Hz, averaged
across correct and incorrect trials, matching the trend in (C). The difference in scale is due to the normalization in
the Hilbert method. (E) shows the normalized histogram of phases, determined by the Hilbert transform between
2-4 Hz, across all trials for each time point. The normalized histogram of the NS-DMD phases between 2-4 Hz is
computed across all trials for each time point in (F). To compare with standard coherence, we take the average phase
difference between every pair of channels for incorrect trials in (G). Coherence is calculated at 3.5 Hz for a window of
0-500 ms between every pair of channels, and the phase difference is averaged with Eq. 17. All average phase values
are set to 0 when the amplitude of the average phase vector is less than 0.1. (H) shows the average phase difference
between every pair of channels for incorrect trials, computed with NS-DMD. Modes are averaged, where the modes
are between 2-4 Hz and where f > f within 100-300 ms. NS-DMD finds a similar answer to (G) with a mean squared
error of 0.17. The difference is shown in (I).
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Hilbert transform. Jutras et al. (2013) [26] showed that
eye movements are associated with phase resets. We
explore whether feedback events also cause a phase
reset. We bandpass and Hilbert transform every channel
between 2 and 4 Hz. The angle of the Hilbert transform
finds the instantaneous phase for every millisecond of
every trial. We find a consistent phase shortly after
feedback begins. A phase histogram for an example
channel is shown in Fig. 8E. We compare the phase in
the NS-DMD modes, ∠ϕ, for the same example channel.
The histogram of phases of all modes between 2 and 4
Hz is shown in Fig. 8F. The same phase reset can be
seen in the NS-DMD phases.

Lastly, we compare NS-DMD to an example coherence
analysis. We calculate the coherence between every pair
of electrodes with the Welch method at 3.5 Hz for 500
ms after feedback begins. We then find the average phase
difference between all pairs of channels across correct
and incorrect trials, given by Eq. 17. We consider only
phases for which the magnitude of the average phase
vector θ > 0.1. The resulting spatial phase difference
map for incorrect trials is shown in Fig. 8G. For NS-
DMD. We find the phase difference between all pairs
of electrodes for modes between 2 and 4 Hz and when
f(t) > f(t) between 100 and 300 ms. We average the
phase differences with Eq. 17. The resulting spatial
map in Fig. 8H matches the coherence analysis. The
difference is shown in Fig. 8I, highlighting some small,
local differences. The mean squared error (MSE) is 0.17.

C. APPLICATION TO SEA SURFACE TEMPERATURE
We apply NS-DMD to sea surface temperature (SST)
data, where known global frequencies exist. SST data
(NOAA Optimum Interpolation (OI) Sea Surface Tem-
perature (SST) V2 [48]) is collected via satellite, and it
is averaged weekly from 1990 to 2016 on a 180 by 360
grid across all longitudes and latitudes. After flattening
and removing land locations, we end with a length
44219 vector for 1455 weeks. The data for each recording
location are normalized by z-scoring across weeks.

The power spectrum density (PSD) of a sample loca-
tion in the Pacific Ocean is shown in Fig. 9(A), where
there appears to be different frequencies: there is a high
amount of power once per year, a smaller amount of
power twice per year, and a fluctuating amount of small
power less than once per year.

From the PSD, we estimate that 6 modes per window
are sufficient to reconstruct the data. We run NS-DMD
with 6 modes per window, a window size of 150 weeks,
a stride of 25 weeks, and we guess the 6 modes have
frequencies of ± 1, ± 2, and ± 0.12 per year. We
compute for the first 1400 weeks. Specific parameters
are labeled in App. B. We find that 5 modes, that span
the entire 1400 weeks, reconstructs the data well. The
cosine distance between the reconstruction and original,
z-scored data is about 0.92.

The amplitudes F are shown in Fig. 9(B) for the 5
modes. There are two modes that exist with a constant
amplitude at once and twice per year. These modes
correspond to seasonal changes in the SST. The once a
year mode is present across the entire ocean (Fig. 9(C)).
Examining the phase in Fig. 9(H) shows a π offset in
the phase from the Northern and Southern hemispheres,
occurring due to the tilt of the Earth. The twice a year
mode occurs in equilateral locations with an emphasise
in the Indian Ocean (Fig. 9(D)). This also occurs due to
the seasonal tilt of the Earth, where equilateral locations
undergo a twice a year heating event when the Sun
shines most directly on it. The phase of the twice a
year mode is shown in Fig. 9(I), where we see a π offset
between the equilateral and non-equilateral locations
around the Tropics of Cancer and Capricorn.

The other three modes in Fig. 9(B) are El Niño and
La Niña modes, and occur with frequencies of 0.12, 0.13,
and 0.18 per year. El Niño and La Niña are typically
referenced to occur about once every 6 years, or with
a frequency of 0.167. These three modes span the 1400
weeks, where when one mode turns off, another turns
on. The spatial amplitude is shown in Figs. 9(E)-(G),
where one can see the characterizing large amplitude in
the equilateral latitudes in the Pacific ocean. To confirm,
we analyze the orange, 0.18 times a year mode in 1998
and 1999, which were known as exceptionally strong El
Niño year and La Niña years. By looking at the orange
mode during a week in January of 1998 and January
of 1999, we see a relative increase and decrease in the
temperature near the equator in the Pacific Ocean (Figs.
9)(J) and (K).

We highlight that NS-DMD is applicable to sea surface
temperature data, and it can find modes of particular
interest. It is appropriate for this problem due to the
combined stationary and non-stationary modes. The
seasonal changes in temperature are stationary, but the
El Niño and La Niña effects are non-stationary.

Other groups have approached SST data with DMD
like methods: [32] uses multi-resolution DMD, [22] uses
Time-varying Autoregression with Low Rank Tensors
(TVART), and [50] uses BOP-DMD to analyze SST
data. They have all shown success in finding modes cor-
relating with El Niño and La Niña in the Pacific Ocean.
Our approach, however, allows us to find differences in
the spatial amplitude during different years. The modes
attributed with El Niño and La Niña turn on and off
during two specific years, indicating that the structure
may be changing slightly.

IV. DISCUSSION
We introduce a novel method for analyzing time-series
data: Non-Stationary Dynamic Mode Decomposition.
NS-DMD builds on previous DMD methods by including
global modulation and time dependent modes. Thus, any
improvement to standard DMD algorithms can be easily
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FIGURE 9: Application of NS-DMD on Sea Surface Temperature data ranging from 1990 to 2016. (A) shows the
power spectrum density for a random location in the Pacific Ocean. (B) shows the amplitudes of the 5 resulting
NS-DMD modes F. The legend highlights the average frequencies for each mode in units of cycles per year. Note the
two stationary modes that occur due to seasonal effects. The other three modes tile the duration of the dataset and
are most likely El Niño and La Niña modes. For (C) through (K), the horizontal bar showcases which mode it comes
from, in terms of the colors in (B). (C) shows the spatial amplitude |ϕ| for the once a year mode. The relative phase
∠ϕ is shown in (H), where the Northern and Southern hemispheres are a π phase apart. The spatial amplitude for
the twice a year mode is shown in (D) and the relative phase is shown in (I). This mode appears to be strongest in
equilateral latitudes, particularly in the Indian ocean. The phase appears to be π offset between latitudes near the
equator and outside the equator. The boundaries appear consistent with the tropic of Cancer and Capricorn, where
the sun may be directly above the Earth’s surface. (E) through (G) show the spatial amplitudes for the El Niño and
La Niña modes, where the strength is particularly strong in the Pacific ocean. The data is reconstructed from solely
the orange, 0.18 times a year mode, and the resulting reconstruction for a week in January in 1998 and 1999 are
shown in (J) and (K) respectively. The ocean temperatures are known to have exhibited a very strong El Niño event
in 1998 and a very strong La Niña event in 1999.

integrated into NS-DMD. NS-DMD accurately discovers
modes that well explain data across a range of simulated
settings. III-A. Naturally, this method is best suited
for data that includes low-rank spectral features. It is
possible to run DMD on any time-series data, since any
signal can be decomposed into a Fourier series basis set
of sines and cosines.

NS-DMD can be useful in many empirical settings.
This is because many systems elicit non-stationary be-
havior. For such systems, NS-DMD is better suited than

previously proposed methods that assume stationary
properties. In the present work we demonstrated this
in data from large-scale neural recordings and from
recordings of SST. As shown in Sec. III-B, for these em-
pirical data, NS-DMD extends and subsumes standard
methods, such as spectrograms, wavelet transforms, or
coherence. However, while these methods work on in-
dividual recording locations or can be combined with
global dimensionality reduction techniques, the main
benefit of NS-DMD is to simultaneously gather spatial
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information, spectral information, and growth and decay
of all modes.

NS-DMD can capture drifting components since it
allows for modes to modulate slightly over time. It is
then useful to combine modes into one single drifting
mode instead of defining multiple new processes. Among
its limitations is the fact that NS-DMD requires careful
choice of the correct values of hyperparameters. If the
similarity threshold is too tight, a single mode will be
parsed into many chunks at different short intervals
of time. If the similarity threshold is too broad, we
lose the ability to distinguish between mode switching
and time dependent modes. Expert knowledge can help
with hyperparameter choice. Alternatively, to decide
on hyperparameters, we recommend directly analyzing
modes from consecutive windows. E.g., if the modes
gradually change, the similarity hyperparameters should
allow these modes to be defined as similar. Or if the
modes turn on or off rapidly, a tighter similarity hyper-
parameter can be used.

A. RELATED WORK
Many previous approaches exist to fit non-stationary
systems that are closely related to NS-DMD. In this sec-
tion, we describe some of this previous related work, and
draw distinctions between these previous approaches
and the NS-DMD approach developed in the present
paper. These include hidden Markov models [15, 6, 59],
and time-varying autoregressive models [23]. Generally,
these methods contrast with our approach in assuming
discrete state transitions and do not fully capture the
dynamics in terms of identifying spatiotemporal modes
of the system. Piece-wise Locally Stationary Oscillation
models [57] and state-space multi-taper methods [28]
focus on non-stationary estimates for univariate time-
series recordings. However, while these approaches can
independently model individual components of a multi-
variate time-series, they cannot find low dimensional
spatial modes combining components.

Variations of DMD [31] seek to address the full spa-
tiotemporal dynamics, including finding reduced dimen-
sionality spatial modes of oscillatory dynamics, across
large, multi-variate systems [35, 32]. While powerful
in principle, DMD is highly sensitive to noise [9, 2],
thus generating biased and inaccurate estimates of the
dynamics. Optimized DMD provides the most stable
and biased estimate of a DMD model [2], with the
bagging, optimized DMD (BOD-DMD) method [50]
improving the method even further by providing un-
certainty estimates of the DMD fit. But these DMD
methods still fail when the generating dynamical system
switches between different approximately linear regimes
[41]. Within the Koopman framework, Macesic et al. [35]
introduce two methods for dealing with rapid switches
in the underlying system as well as continuously varying
time-series, although expert knowledge of the system

is needed to introduce observables that linearize the
dynamical system. One variation of particular interest,
Multi-Resolution DMD [32], specifically accounts for
non-stationary time-frequency data. In this approach,
one seeks DMD modes at different frequency scales, and
with smaller and smaller windows, which increases the
temporal resolution. The method successfully identifies
non-stationarities, e.g., the El Niño effect in ocean
temperature data. One downside, however, is that expert
knowledge of the appropriate window size at different
scales is required. This also assumes that lower frequency
modes are more stable in time. While this may be ap-
propriate for some systems, such as ocean temperature,
this is not generally true for all non-stationary systems.

Switching Linear Dynamical Systems (SLDS) [16,
12, 34, 8], assumes a Markov process that switches
between discrete, linear systems. A recurrent version was
developed for neuroscience applications in [17]. These
types of models find discrete states and transitions
between them. NS-DMD can improve on this by allowing
the states themselves to modulate over time, i.e. with
a continuously variable amplitude or frequency. It also
allows for independent transitions in individual modes
or spatiotemporal components of the dynamics, without
requiring an entire state to transition.

Another recent addition to the toolbox of methods
for time varying systems is Latent Factor Analysis via
Dynamical Systems (LFADS) [60, 42], in which smooth,
low-dimensional dynamics are inferred using deep learn-
ing based on initial conditions and inferred inputs. While
LFADS was first developed for neuronal spike counts,
modeled as point processes driven by underlying latent
dynamics, recent work [40] has extended LFADS to
continuously varying signals. This method does not as-
sume linear dynamics and instead uses recurrent neural
networks to find low dimensional factors. Since NS-DMD
uncovers linear approximations, some representations
may be easier to interpret, such as the leading and
lagging of individual spatial areas.

Lastly, a recent approach to non-stationary time-
frequency data is Time-Varying Autoregression with
Low-Rank Tensors [22], which successfully identified low
rank modes and crossover points for constantly evolving
data. This method is extremely similar to NS-DMD,
even finding global modulations of individual modes.
However, instead of finding dynamics in the form of
Eq. 2, they find the global modulation of two spatial
components; there is a lack of frequency and phase of
each spatial mode. E.g., if one is interested in the global
modulations of modes at a particular frequency or if one
is interested in the phases of the spatial distribution,
NS-DMD can be more informative.

B. FUTURE DIRECTIONS
There are a number of potential additions for improving
the effectiveness of NS-DMD. First, we implemented
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Optimized Dynamic Mode Decomposition [2], which is
known to be more robust to noise than the standard
DMD method. In the future, we plan on adding Bagging
Optimized DMD (BOP-DMD) [50] to NS-DMD. In
BOP-DMD, one runs OPT-DMD many times for each
window to find statistics of each mode. BOP-DMD
also can provide a metric to quantify uncertainty as
it automatically produces probability density estimates
for the modes, eigenvalues and loadings of the DMD
approximation. This could aid with some cases where
excess, poorly estimated modes are removed.

In the gradient descent method, we have imposed non-
negativity and continuity by manually setting negative
values to zero and smoothing across time. Given ad-
vances in Non-Negative Matrix Factorization (e.g. [33]),
we believe it possible to further optimize the gradient
descent method to implicitly restrict the values. We
also believe we can implicitly add averaging into the
methods.

Another assumption of NS-DMD is that the data are
real. If the data are instead complex, one can easily
transform it by squaring the magnitude. In the future,
however, we plan on generalizing the gradient descent
method to allow for complex inputs.

In allowing modes to disappear for extended periods of
time, one expects in general that they can reappear with
a phase unrelated to the previous appearance. However,
NS-DMD retains phase information about modes. As
we explore in the supplementary simulations (Sec. S2-
C), under these conditions NS-DMD will either add
an entirely new mode or mix modes. Ideally, phase
should reset anytime that F reaches 0. In the future,
we plan on implementing this by checking similarity in
non-consecutive windows, allowing for merging of modes
differing only by phase when delayed by large time
intervals. This should remove any mode mixing and help
with interpretability.

Lastly, we have implemented relatively simple feature
selection algorithms. Given the large body of work in this
area, we plan on adding other methods, as implemented
and reviewed in [3] and [43].

These additions should help with both speed and
accuracy of NS-DMD. In the meantime, the current
rendition of NS-DMD works very well in many simu-
lations and on a range of different empirical data, and
the method already has the power to elucidate systems
that were previously intractable.
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APPENDIX A CODE AVAILABILITY
Python code implementing NS-DMD and worked
examples can be found at https://github.com/
learning-2-learn/nsdmd. All simulations, including sup-
plementary ones, are included here.

APPENDIX B HYPER-PARAMETERS
All hyperparameters are listed for the simulations, LFP
data, and SST data. The parameters are listed in the
order they appear in NS-DMD, and we reference the
steps listed in Sec. II-B4.

• Step 1 (optional) we bandpass the data for the
frequency decay simulation (Sup. Sec. S2-A) and
trim 1500ms off the ends. We bandpass the LFP
data (Sec. III-B) and trim 500ms off the ends.

• Step 2: all simulations use a window size of 500ms
and a stride of 100ms except for the frequency drift
simulation (Sec. III-A2), where we use a window
size of 200ms and a stride of 50ms. All simulations
use an OPT-DMD rank of 4 except for the four
assembly simulation (Sec. III-A1), where we use 2,
4, and 6.

• Step 3:, the similarity thresholds are listed in Table
1.

• Step 4 (optional): when using an OPT-DMD rank
of 6 in the four assembly simulation, we require
two or more consecutive similar modes in a row.
In the LFP and SST data, we require three or more
consecutive similar windows in a row.

• Step 5: for all simulations, we smooth the frequency
in S with a moving average of size 51ms.

• Step 5 (optional): we include a channel specific
temporal lag in for the simulation in Sup. Sec. S2-B.

• Step 6 (optional): for the frequency decay simu-
lation (Sup. Sec. S2-A), we remove all individual
modes where the reconstruction error is less than
0.2.

• Step 7 (optional): In all simulations except those
listed below, we feature select using the exact
method (Sup. Sec. SA-1), and we use a variance
threshold of 0.01. In the cases of using a large rank
in Sec. III-A1 or in the frequency die off simulation
(Sup. Sec. S2-A), we use gradient descent with a
maximum number of iterations of 5. In all simula-
tions, we run the SBS feature selection algorithm
and terminate at 1 mode. In the frequency decay
simulation, (Sup. Sec. S2-A), we use the SFS algo-
rithm and terminate at 30 modes.

• Step 8: the parameters for gradient descent are
described Table 1. In all simulations, we use a
maximum iteration of 100, a learning rate of 0.01, a
momentum of 0.9, and a low pass filter of the initial
guess at 2Hz.
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Simulation Freq. Diff. |ϕ| Diff. α β N
Two-Assemblies 0.2 0.92 0.1 0.1 20

Two-Assemblies (small rank) 0.2 0.97 0.1 0.1 20
Two-Assemblies (large rank) 0.2 0.92 0.1 0.1 20

Freq Coupling 0.2 0.98 0.1 0.1 8
Coupling Lag 0.2 0.95 0.1 0.1 3

Freq Power Law 0.2 0.90 0.0 0.0 30
Freq Drift 1.0 0.95 0.07 0.1 20

Spatial Drift 0.2 0.92 0.1 0.1 20
Mode Return 0.2 0.98 0.1 0.1 20

LFP Data 0.5 0.90 0.0 2.0 30
SST Data 2 0.90 0 0 5

TABLE 1: Table of similarity parameters (L), which describes the thresholds for different windows to be considered
"similar". Similar modes are grouped together. We omit the ϕ angle similarity threshold, which we set to 10 for all
cases. This threshold is compared to the mean squared error. (R) describes the hyperparameters for gradient descent.
For the β term and averaging between iterations, we use N consecutive time points.
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