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Debate about the function of the hippocampus often pits

theories advocating for spatial mapping against those that

argue for a central role in memory. This review addresses

whether research in the monkey supports the view that

processing spatial information is fundamental to the function of

the hippocampus. In support of spatial processing theories,

neurons in the monkey hippocampal formation have striking

spatial tuning, and an intact hippocampus is necessary to

effectively utilize allocentric spatial relationships. However, the

hippocampus also supports non-spatial processes, as its

neurons acutely respond to distinct task events and

hippocampal damage disrupts both expedient task acquisition

and the monitoring of ongoing events in non-spatial paradigms.

The features that are shared between spatial and non-spatial

hippocampal-dependent tasks point toward a common

mechanism underlying hippocampal function that is

independent of processing spatial information. We suggest that

spatial information is only one facet of immediate experience

represented by the hippocampus. The current data support the

idea that the hippocampus tracks many aspects of ongoing

experience and the primary role of the hippocampus may be in

linking experienced events into unitary episodes.
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Introduction
The function of the hippocampus is a topic of spirited

debate, and recent studies in non-human primates offer

insight into this ongoing controversy. Theories of hippo-

campal function have been primarily informed by behav-

ioral impairments following hippocampal lesions as well

as electrophysiological characterization of its neural activ-

ity, but results from these two approaches often yield
www.sciencedirect.com 
divergent interpretations that are difficult to reconcile.

One view is rooted in the tradition of human neuropsy-

chology, casting the hippocampus as the critical mediator

of memory — especially autobiographical, conscious rec-

ollection [1,2]. In contrast, rodent physiology research has

led to a prominent interest in spatial processing and

navigation, owing to the remarkable specificity of place

and grid cells that fire in discrete locations as the animal

moves through an environment [3,4]. These striking

patterns of activity bring to light how robustly immediate

experience is represented in the hippocampus, and neces-

sitate that a complete description of hippocampal func-

tion must account for the instantaneous activity that is

present as the animal interacts with the environment.

The spatial processing theories of the hippocampus offer

an intuitive interpretation of this ongoing activity, and

consequently they have increasingly gained traction

across all species in recent years [5–10]. In this article,

we summarize the behavioral and electrophysiological

evidence for spatial processing within the monkey hip-

pocampus, and we explore the commonalities of findings

in spatial and non-spatial tasks. In the course of this

review, we will evaluate the hypothesis that processing

spatial information is a fundamental constituent of hip-

pocampal function. We will also consider an alternative

hypothesis that spatial information is a non-essential

contributor to a broader hippocampal function, that of

linking experienced events into a unitary structure.

Hippocampal dependence in spatial tasks
To assess whether processing spatial information is an

essential component of hippocampal function in the

monkey, it is informative to evaluate the deficits seen

in spatial tasks after lesions of the hippocampus. Though

hippocampal involvement in navigation or path integra-

tion has not been explicitly tested, some studies suggest

the monkey hippocampus is important for other forms of

spatial cognition. Monkeys with lesions of the hippocam-

pus show deficits in returning to the location of a hidden

reward within a large open room, especially when there is

a delay after sampling the target [11]. This deficit princi-

pally manifests when the target is only identifiable by its

position relative to distal landmarks and the monkey

approaches the arena from different entry points [12].

Along similar lines, damage to the monkey hippocampus

also interferes with the ability to recognize an array of

familiar objects in an unfamiliar spatial arrangement after

a long delay has elapsed [13,14]. More recently, transient

inactivation of the anterior hippocampus was shown to

impair the ability to keep an ongoing record of which
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locations had been sampled from an array of boxes. Impor-

tantly, short delays do not interfere with the ability of the

monkey to efficiently self-order responses, but long delays

reveal a significant impairment [15�]. Similar results have

been observed when monkeys with hippocampal lesions

are required to monitor the accumulation of spatial targets

in the delayed-recognition-span task [16]; but see [17].

Together the evidence from these studies suggests that

the hippocampus may be important for recognizing the

relative positions of objects, especially after delays. How-

ever, it is critical to note that these studies mark the few

examples of hippocampal-dependent spatial cognition.

Importantly, processing positional information alone does

not seem to rely on the hippocampus [14,18–20] particu-

larly when it can be egocentrically defined from the

perspective of the stationary monkey [21]. Instead, the

hippocampus seems to be required when spatial relation-

ships between objects in allocentric space must be formed,

and when spatially distinct objects must be linked across

time. Though the hippocampus is not necessary for all

aspects of spatial cognition, the studies summarized here

suggest that the hippocampus is important for (1) forming

allocentric spatial relationships, (2) bridging spatial infor-

mation across a delay period, and/or (3) accumulating a

history of spatial relationships.

Spatial activity in neurons of the hippocampal
formation
Further insight into the role of the monkey hippocampus

in spatial cognition comes from electrophysiological stud-

ies, which offer an important comparison to the rodent

literature [5,8]. Just as rodent neurons instantaneously

respond as the animal moves through space, monkey

hippocampal neurons change their activity as the animal

explores the environment. However unlike rodent place
Figure 1
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cells that respond when the animal enters a specific

position in the room [3], monkey hippocampal neurons

fire when monkeys look at a particular location. These

spatial view cells respond irrespective of the orientation of

the monkey’s body or position within a room as long the

preferred location is in view (Figure 1a). The mapping of

spatial view cells is sustained even after multiple seconds

in the dark [22] or occlusion of the items viewed [23],

indicating that the neurons are not directly driven by

visual features of a foveated object. Furthermore, the

allocentric specificity of spatial view cells can be relative

either to distal landmarks [24–26], or to a locally defined

subset of space, for example the position of the gaze on a

computer monitor irrespective of the monitor’s position in

the room [27]. Thus, the activity characterizing spatial

view cells demonstrates that the monkey hippocampus

has access to robust spatial information, and can track

spatial relationships as the animal explores meaningful

portions of the environment.

Research within our laboratory confirms the availability of

spatial information to the primate hippocampus in its

direct afferent, the entorhinal cortex. In this structure,

we have identified spatially selective neurons that are

active as monkeys freely view pictures: grid cells that fire

in a repeating hexagonal pattern that spans the space

(Figure 1b), and border cells that fire along a vector parallel

to an environmental boundary (Figure 1c) [28��]. These

spatially selective neurons are notably different from their

counterparts in the rat which respond as the animal

translocates through space [4,29]; instead the spiking

we observe is anchored to viewed locations and manifests

as the gaze of the monkey moves over the monitor. In

more recent research, we have elaborated our description

of spatially selective neurons in the entorhinal cortex to
 (d)
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include cells with irregular, but reliable, spatial fields. We

find that the spatial tuning of grid cells and non-grid cells

can be locked to different reference frames in a manner

similar to spatial view cells [27], being anchored either to

the subregion of the screen where the image appears or to

the broader allocentric space defined by landmarks within

the room [30]. Together, the neural activity within the

hippocampus and entorhinal cortex seems to utilize an

elaborate spatial organization, which may be essential for

binding discontiguous visual percepts into a mosaic of

objects within a three-dimensional world.

Glimpses of the mechanisms that provide spatial struc-

ture may be seen in the entorhinal activity that is modu-

lated by the path of saccadic eye movements. As a

monkey scans a visual scene, a subset of entorhinal

neurons fire in a directionally specific manner either just

before or just after the gaze moves from one part of the

screen to the next [31��], registering either where the gaze

was or where it is going. Considered in the aggregate, the

entorhinal population is capable of continuously tracking

the trajectories of the gaze through visual space. This

suggests that the entorhinal network benefits from an

accumulated history of scan paths, providing a means of

spatiotemporally linking objects seen across fixations

through time. Binding percepts across time into an orga-

nized structure would be key to creating a cogent repre-

sentation of the experienced environment, and suggests

that the entorhinal cortex may mediate the specificity of

visuospatial responses in the hippocampus.

The breadth of hippocampal spatial activity also extends

past the locations that are viewed to include allocentric

representations based on translocation of the monkey’s

body through space, as is the case with rodent place cells.

Recordings from head-fixed monkeys that maneuver

around a room in a motorized cab have identified neurons

in the hippocampus that differentially fire as the monkeys

traverse space [32–34]. Similar results were obtained from

freely moving squirrel monkeys foraging in a large, open

cage [35]. Notably, these neurons fire more diffusely than

rat place cells, so it is uncertain whether allocentric space

is the best predictor of the neural activity. Experiments

utilizing virtual navigation have yielded hippocampal

activity with tighter correlates to allocentric location

(Figure 1d) [36,37�]. Changing the distance between

the maze cues and the virtual arena cause these neurons

to alter their firing pattern, indicating a sensitivity to the

allocentric arrangement of distal landmarks. Recent work

extends these findings by demonstrating that the position

of the monkey and the location of the gaze conjunctively

drive the activity of individual hippocampal neurons

[38��]. In addition, the authors show that neurons that

respond to specific landmarks are also contingent on

current position, and that encountering upcoming land-

marks can be anticipated in the hippocampal activity.

Although a true counterpart to the rodent place cell has
www.sciencedirect.com 
yet to be found in the monkey, it is nonetheless apparent

that neurons within the hippocampus have enough infor-

mation to disambiguate between the monkey’s locations

within an environment.

The function of the hippocampus outside the
spatial domain
In considering the impressive breadth of spatial responses

manifest in the monkey hippocampus, it is clear that the

hippocampal network continuously tracks location infor-

mation as the animal explores the environment. However,

the mere presence of spatial responses does not confirm

that hippocampal activity is dominated by spatial proces-

sing. Indeed, the most recent virtual reality work demon-

strates that space alone is not a sufficient predictor of

hippocampal activity [38��]. Instead, hippocampal neu-

rons conjunctively code immediate experience based on

the present position of the animal and the expectation of

encountering a targeted object — revealing that the mon-

key hippocampus is processing multiple types of infor-

mation in relation to the task at hand.

The prominence of task-relevant responses has been

consistently shown in paradigms that do not involve

spatial exploration. In these experiments, hippocampal

neurons acutely respond to the distinct events in cued

response tasks, despite the monkey being situated in a

fixed location in front of a monitor. Neurons that respond

during the cues differentiate their activity based on the

cue identity [39–42] or the associated response to the cue

[39,42–44] indicating that the hippocampus registers non-

spatial events as they occur and the neural response is also

contingent on the rules of the task. More recently, it has

been shown that cue-specific activity can span the delay

period before a response, creating a bridge between the

events of the task [45,46]. These task-specific responses

develop around the time that the animal learns the

contingencies of the experimental paradigm [43,47,48],

suggesting that the activity of hippocampal neurons may

be the direct result of abstracting conditional relation-

ships across task events. In this way, the hippocampal

network may be extracting a schematic representation of

the task [49], incrementally building a circuit that recog-

nizes the progression of upcoming events. This interpre-

tation of the neural activity is supported by the finding

that hippocampal lesions disrupt performance in para-

digms that require the monkey to maintain an ongoing

record of recent responses [15�,16,50�]. Furthermore,

linking events through hippocampal circuitry is congru-

ent with the consistent finding that hippocampal

lesions greatly impede the acquisition of new tasks

[16,19,50�,51,52], and suggests that learning new tasks

may be mediated by sculpting the hippocampus to track

ongoing events. It is notable that the features of non-

navigational hippocampal-dependent tasks, i.e. (1) form-

ing task relationships, (2) bridging task delays, and (3)

accumulating a history of task events, are also the critical
Current Opinion in Behavioral Sciences 2017, 17:155–160
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features of hippocampal-dependent spatial tasks. This

suggests there is nothing exceptionally important about

the modality of space, and that the more generalized

function of the hippocampus may be to impart structure

that shapes an ongoing record of experience.

Conclusion
The research reviewed here illustrates that the hippocam-

pus prominently exhibits activity reflecting the immediate

experiences of the animal. This phenomenon has been

robustly captured in the spatial domain within monkey

hippocampal neurons, just as it has been often demon-

strated in rodents. The exquisite spatial resolution of

positional information is certainly remarkable, and

undoubtedly motivates the rich interest in spatial proces-

sing theories of the hippocampus. However, the hippo-

campus is not limited to a specific modality of information,

because other task features also elicit clear neural

responses. Instead, spatial information seems to be just

one of many features utilized by the hippocampus to

disambiguate the events experienced by the animal. By

registering each event as it occurs, the hippocampal net-

work continuously tracks the progression of events within

an experience. This interpretation of the ongoing neural

activity complements research showing that hippocampal

lesions impair the ability to monitor recent choices

[15�,16,50�] and to track events across time [11,13,14,20].

By highlighting the importance of representing immedi-

ate experience with ongoing activity, we gain insight into

the means by which the hippocampus may support mem-

ory. As described above, neurons within the hippocampus

can sustain task-contingent activity across different

events and delay periods. While individual hippocampal

neurons are only transiently active, the population in the

aggregate collectively spans task events. By tracking the

elements of experience with a continuous sequence of

activity, the hippocampus is positioned to link the passing

events into a unitary entity — creating an episode from

individual percepts. In this way, the hippocampus may be

critical for linking events as they initially occur, and

would therefore be a prerequisite for the memory of an

episode to be formed. Without the hippocampus tracking

passing events, the animal would be unable to form traces

of recent experiences, displaying anterograde amnesia —

a hallmark of hippocampal dysfunction. In this light, the

sequential activity of the hippocampus mediates a con-

tinuous record of experience, which monitors the progres-

sion of important events that can later be remembered as

continuous episodes.
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