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The discovery of grid cells in the medial 
entorhinal cortex (MEC) inspired theories 
for an elegant spatial code in the brain1,2. 
Grid cells exhibit spatially periodic firing 
fields that tile the environment2,3, which is 
suggestive of a spatial coordinate system. 
Together with hippocampal place cells that 
fire in individual locations4, grid cells are 
thought to construct an internal spatial map 
of the external world5,6. Because grid cell 
firing corresponds to reliable coordinates in 
open- field environments and is maintained 
across environments, grid cells are often 
interpreted to reflect a universal positional 
code that captures veridical measurements of 
external space. However, both grid cells and 
place cells fire selectively in circumstances 
other than spatial navigation, and research 
in humans has long implicated both the 
entorhinal cortex and the hippocampus in 
structuring newly learned information into 
episodic memories7,8. In this Perspective, we 
seek to resolve this tension between spatial 
and non- spatial functionality by revising 
existing network models that are thought to 
support MEC processing. We propose 
that the MEC–hippocampus loop builds 
topological representations7,9–14 that reflect 
temporal contiguity between events within 
experience (Fig. 1a).

of relationships between elements in an 
experience, preserving their arrangement 
independently of the exact time or metric 
distance between them. We suggest that 
the topology supported by the entorhinal–
hippocampal network is specifically derived 
from the temporally ordered relationships 
between experiential elements, or ‘events’. 
This proposed function builds on existing 
models to explain how the grid system 
can both map spatial positions in certain 
navigational circumstances and learn 
the temporally structured relationships 
between events in non- spatial episodic 
experiences. In this framework, both spatial 
and mnemonic processing are aspects of a 
more general function of the hippocampal 
formation in learning topological structure 
from experience rather than coding for 
measurable features.

Continuous attractor networks
To lay a foundation for our updated model  
of hippocampal–entorhinal function, we 
first discuss the MEC as a continuous 
attractor network (CAN). We then review 
the influential proposal that a CAN 
specialized for estimating allocentric 
position — the path integration CAN 
(PI- CAN) — governs activity in the MEC.

Recent studies describing the anatomy 
and physiology of cells within the MEC 
have converged with computational work to 
describe the grid network using continuous 
attractor models18–26. In a CAN, local ‘bumps’ 
of excitation flow through an interconnected 
matrix of neurons through recurrent 
synaptic connections and surrounding 
feedforward inhibition. Excitatory drive to 
the network can propel activity through this 
neural sheet, stabilizing in local subsets of 
neurons via the intrinsic connectivity. Grid 
cell firing is thus thought to be a readout 
of the excitatory bumps of activity ‘passing 
through’ individual neurons in the sheet 
and eliciting spikes18,19. The possibility that 
the MEC operates as a CAN is strongly 
supported by the intrinsic microcircuitry 
between MEC neurons22–26 (Box 1).

The PI- CAN model. During spatial 
navigation, grid cells fire in a repeating 
pattern of equilateral triangles (Fig. 1b). 
This pattern persists across environments 
irrespective of running speed or the route 

In several prominent network models 
that have been proposed to support spatial 
navigation, the recurrent connectivity  
within the entorhinal–hippocampal circuit 
allows the network to continuously track 
position in allocentric space. Precision of 
spatial measurement is an emergent feature 
of these models, and some recent proposals 
advocate that the ‘metric’ ability of the grid 
cell network to make veridical measurements 
in physical space also allows it to encode 
measurements in abstract feature spaces15–17 
(Fig. 1a). We challenge the notion of metric 
rigidity in these models, but we highlight the 
utility of the physiological mechanisms they 
invoke to explain experimental observations 
across both spatial and non- spatial tasks. 
In light of mounting evidence that recurrent 
connectivity and continuous attractor 
dynamics are critical to processing across 
the entorhinal–hippocampal circuit, we 
advocate that temporal contiguity is an 
essential characteristic of coding in the 
MEC and the hippocampus. We propose 
that network activity progresses sequentially 
over time through reciprocal interactions 
between the MEC and the hippocampus 
to create topological representations of 
experience. In this hypothesis, a topology 
is defined as a structural representation 
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taken, suggesting that the grid cell circuitry 
may continuously track idiothetic (that is, 
self- movement) information to estimate  
allocentric position2,27. This process is known 
as path integration and is thought to be a 
central function of the grid network21,28,29.

To derive the allocentric specificity of 
grid cells from self- movement information, 
the PI- CAN model posits that neural 
activity is driven through the attractor 
manifold by an afferent velocity signal18,19,21. 
This signal has two critical elements: 
direction and speed. The direction 
component is hypothesized to be supplied 
by head direction cells within the MEC, 
which respond maximally at a particular 
head orientation relative to the external 
environment27,30–32. Head direction cells 
rotate their preferred directions coherently 
with grid cell orientations to remap new 
environments33–35, suggesting that these cell 

types are integrated into a single attractor 
network. Although theories differ on 
the source of the speed component of the 
velocity signal, the principal candidates 
are MEC speed cells36–38 or the amplitude 
and frequency modulation of the theta 
rhythm driven by inputs from the medial 
septum39–43. The velocity- driven activity of 
the PI- CAN is anchored to allocentric space 
via interactions with landmarks, the most 
salient of which are often environmental 
borders44–46. By linking each element of 
a path integration circuit to concrete 
physiological mechanisms, the PI- CAN 
model has elicited enduring support for  
the theory that spatial navigation is central 
to the function of the MEC.

The combined idiothetic and sensory 
inputs to the PI- CAN are theorized 
to generate a direct mapping between 
translocation through space and 

advancement of neural activity through the 
neural sheet (that is, the attractor state)21,29. 
The attractor state yields a positional code 
through the collective activity of grid cell 
modules, which are subnetworks of grid 
cells with shared field size, spacing and 
orientation of the grid axis47. Each grid cell 
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Fig. 1 | Representations that are hypothesized 
to be supported by grid cells. a | Comparison of 
conceptual models that may be supported by 
grid cells. The ‘representational scheme’ schem-
atic illustrates how the entorhinal–hippocampal  
network represents relationships, and the ‘net-
work computation’ schematic illustrates the 
nature of the information supplied to readers of 
the entorhinal–hippocampal network. A topol-
ogy based in the temporal order of events (left) 
has structure across nodes rooted in the order of 
events in experience; relationships reflect  
temporal adjacency. This structure formulates 
sequences that can link disparate items, which 
may be manifest in the fine timing of spikes 
within each theta cycle (see Fig. 2). By contrast,  
a feature space in which relationships between 
items are defined by featural attributes measured 
along the axes (right) can be used to derive cate-
gories (such as types of apples or citrus fruits; see 
Box 2). b | Firing patterns of an archetypical  
grid cell in the medial entorhinal cortex and a 
place cell in the hippocampus, in a square open 
arena. The animal’s trajectory through the arena 
(grey line) and the spikes of the cells (red dots) are 
depicted (left). The heat map (right) depicts spa-
tially averaged firing rates of the cells, with 
warmer colours indicating higher firing rates.  
c  | Grid cell fields are organized in a rhombus- 
shaped tile that spans the environment. The rela-
tive position within the tile is given by coordi-
nates (φ, ψ) defined by the rhombus axes (solid 
and dashed arrows). In one proposed implemen-
tation of connectivity within the tile, connecting 
the rhombus edges forms a twisted torus19,20,50,51, 
creating a continuous surface capable of gener-
ating periodic fields. d | Grid cells with similar 
field spacing and orientation are organized in 
modules. Spatial offset between grid cells (differ-
ent colours within a module) indexes the relative 
position within a module tile. Combining activity 
across modules disambiguates individual posi-
tions in the environment along the trajectory 
(dotted line). Spike rasters demonstrate the activ-
ity of each module over time as the trajectory 
progresses. The population rate code across 
modules creates a unique identifier for each posi-
tion in space (green and red asterisks). The rhom-
boid tile of each module creates its own twisted 
torus (right), on which individual grid cells are 
periodically active at different locations along its 
surface. e | Inaccurate decoded positions result-
ing from distortion in grid field spacing64. When 
the walls of the environment are reconfigured 
from a rectangle to a trapezoid, grid fields shift 
away from the altered edge, such that position 
decoding that depends on the precise geometry 
and regular spacing of the grid pattern would be 
inaccurate.
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module maps a tile that repeats throughout 
the environment (Fig. 1c), and the fields 
of grid cells within the module are offset 
from each other, collectively mapping the 
relative space within a tile47–49. Periodicity is 
posited to arise from connectivity within the 
module that allows the activity to repeatedly 
cycle through the attractor whenever the 
animal reaches the edge of the module 
tile18–20,50,51. Owing to this connectivity, 
the grid network is thought to provide a 
geometrically consistent code irrespective 
of the shape or size of the environment. 
Because the pattern of activity within each 
module repeats, unique locations across 
the entire environment are disambiguated 
by combining information across different 
modules that have different orientation 
and spacing18,48,49,52,53 (Fig. 1d). If the grid field 
spacing of each module is consistent across 
the environment, the combined activity 
across modules can map a one- to- one 
relationship between the attractor state and 
the animal’s coordinates in space. With these 
elements, the PI- CAN model of the grid 
cell system is thought to create an efficient 
and boundless code, allowing downstream 
structures to calculate the distance and 
vectoral bearing between two points48,53,54.

Evaluating the PI- CAN framework
Data consistent with the PI- CAN model. 
Experimental findings support the idea that 
a local attractor network underlies MEC 
processing. Grid cell spiking is accompanied 
by sustained membrane depolarization as 
animals pass through the firing fields of a 
grid cell55,56, consistent with a link between 
translocation and excitatory bumps of activity 
moving through the neural sheet. As predicted 
by CAN models, anatomically neighbouring 
grid cells are roughly clustered into modules 
with similar grid spacing and orientation24,47,57 
that maintain their spatial relationships 
across different environments25,58. Spike 
correlations between cells within a module 
are preserved during sleep59–61, demonstrating 
that structured activity during waking is 
supported by intrinsic connections rather 
than being solely reliant on external inputs. 
In addition, manipulations of both MEC 
layer II pyramidal cells26 and parvalbumin 
interneurons62 (see Box 1) disrupt the spatial 
specificity of grid fields, indicating that grid 
cell firing is critically shaped by intrinsic 
MEC connectivity and is consistent with 
CAN dynamics.

Spatial data requiring an update of the 
PI- CAN model. While there is strong 
evidence of CAN dynamics, accumulating 
experimental evidence presents two main 

challenges to the PI- CAN framework. First, 
the PI- CAN model posits that symmetric 
field spacing of grid cells allows a metric 
measurement of space. To provide this 
metric measurement, symmetric spacing 
should be static across experience and 
independent of environmental features. 
However, several lines of evidence have 
shown that grid spacing is instead dynamic 
with experience and malleable with changing 
environmental features. Displacing the 
walls of 2D environments causes grid fields 
to elongate their spacing in proportion to 
the environmental change37,47,63, and open 
fields that lack symmetry cause distortions 
in the geometry of the grid pattern near 
the asymmetric wall64,65 (Fig. 1e). These 
shifts in grid field spacing may depend 
on the recent experience of the animal 
in encountering borders66, which drives 

history- dependent updates of the relationship 
between the attractor state and the external 
environment44,45,66. Consistent with a role 
for experience in shaping the grid pattern, 
environmental novelty increases grid field 
spacing, while gaining familiarity reverses 
this effect67 and shifts grid spacing in 
accordance with the learned layout of the 
environment68,69. During goal- directed 
behaviours, grid fields can migrate towards 
learned reward locations, locally distorting 
grid spacing and over- representing goals70. 
The symmetric spatial periodicity implied 
by the PI- CAN model is therefore not an 
immutable feature of grid cells. Rather, 
environmental features anchor grid fields, 
which sometimes results in irregular spacing. 
This limits the interpretability of grid 
patterns as a metric code71. Instead, the grid 
network is well suited to represent the spatial 

Box 1 | MEC and hippocampus connectivity underlying CAN dynamics

Principal cells in layer II (l2) and layer III (l3) of the medial entorhinal cortex (mec) comprise a 
multitude of functionally defined cell types, including grid cells, head direction cells, border cells 
and non- grid spatial cells27,35,211–213. Within the mec, grid cells are embedded within a network  
that has elaborate intrinsic connectivity, with recurrent excitation between subsets of nearby 
excitatory neurons and strong feedforward inhibition via local interneurons22,23,26,214–217. 
This connectivity is poised to support recurrent activity patterns and provides an anatomical 
substrate for intrinsic propagation of activity through the tissue.

Grid firing patterns have been observed in both excitatory principal cell types of the mec218,219, 
stellate cells and pyramidal cells220,221. l2 pyramidal cells make lateral excitatory synapses onto 
stellate cells, interneurons and other pyramidal cells within l2216,217, whereas l2 stellate cells  
are thought to communicate with each other primarily via feedforward inhibition through 
interneurons22,215 (see the figure, part a). Inhibitory input to the principal cells in l2 and l3 diminishes 
in strength as a function of distance22,23,26,143,214,215, suggesting that activity propagates through the 
network by successive recruitment of anatomically restricted microcircuits. communication across 
layers is facilitated by ascending excitatory synapses from l5b pyramidal cells to l5a pyramidal cells, 
l3 pyramidal cells and l2 stellate cells142,143,222, as well as from l3 pyramidal cells to l2 stellate cells217. 
Descending excitation flows primarily from l2 stellate cells to l5b pyramidal cells, the primary 
recipients of hippocampal input223. the dendritic field of excitation ascending from deep to 
superficial layers of the mec is asymmetrically offset from the receiving neuron143, which suggests 
that deep layers may direct an asymmetric flow of activity within the continuous attractor network 
(cAN) comprising the superficial layers39,52,224.

mec stellate cells in l2 project primarily to the dentate gyrus (DG) and cA3, while pyramidal  
cells in l2 and l3 project to cA1 (reFs225–227) (see the figure, part b). reciprocally, hippocampal cA1 
and subiculum (Sub) pyramidal neurons project primarily back to l5 and l6 of the mec225,228, where 
grid cells are present but less numerous than in the superficial layers27. Direct projections from  
cA1 or the subiculum to l3 (reF.229) and from cA2 to l2 have also been observed230, as have minor 
projections from l5 back to the hippocampus231. Ascending excitatory connections from the deep 
layers to the superficial layers of the mec close the mec–hippocampus loop142,143,217,222.
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relationships between environmental borders 
and other types of landmarks learned over 
the course of experience.

Second, the locomotor velocity input 
in the PI- CAN model, which is putatively 
provided by speed and head direction 
cells, is often assumed to be uniform 
across behavioural conditions to supply 
the consistent driving force required for 
a universal and boundless grid pattern. 
However, contrary to this assumption, 
changes to environmental boundaries 
cause speed cells to rescale their firing 
responses and head direction cells to 
reorient themselves37. While the rescaling 
of speed signals can account for changes 
in grid spacing in the PI- CAN model19, it 
is unclear what drives speed cells to rescale 
their firing responses or why these changes 
would occur asymmetrically37. In addition 
to a dynamic speed signal, head direction 
cells can transiently reorient themselves 
when local salient cues are moved relative 
to the allocentric reference frame72. These 
observations suggest that, as with grid 
spacing, speed and head direction cells 
are anchored to salient environmental 
characteristics rather than absolute metrics 
of locomotion37. Moreover, speed and head 
direction signals do not seem to be sufficient 
to drive grid cell firing. Locomotion exerts 
a variable influence on the positional 
specificity of MEC cells73 and competes with 
the influence of optic flow information to 
drive grid cell periodicity74. In addition, head 
direction cells can decouple from the grid 
network in linearized environments, such 
that they maintain allocentric orientation to 
room cues while grid cells reorient 
themselves58,75–78. This finding is contrary 
to the expectation of the PI- CAN model, 
as static coupling between head direction 
cells and grid cells is posited to support path 
integration calculations irrespective of the 
environment. Finally, head direction fails to 
accurately capture true movement direction79, 
further calling into question the role of head 
direction coding in generating grid fields 
according to path integration. Together, the 
irregularity of grid fields and the inconstancy 
of the velocity signals demonstrate that 
activity in the MEC network is not dedicated 
to making precise spatial measurements. As 
the PI- CAN model is insufficient to explain 
MEC firing in all circumstances, a revision of 
the model is required to accommodate these 
new experimental observations.

Spatial data unanticipated by the PI- CAN 
model. Recent data have exposed additional 
sources of variability in grid cell firing 
that may indicate a more complex drive 

to the MEC. The PI- CAN model predicts 
that each field of the grid pattern will have 
a consistent firing rate due to uniform 
drive from velocity inputs irrespective of 
position in the environment. Empirically, 
however, individual grid fields can exhibit 
different directional sensitivity80 and often 
have consistently different firing rates35,81–83 
or completely fail to fire84. Variable firing 
rates may also signal motivationally salient 
information, as grid cells selectively increase 
field firing rates on the basis of the route 
taken61 and near hidden reward locations33. 
The variable firing within grid cells 
suggests that input to the MEC varies by 
position throughout the environment —  
a feature that cannot be derived from a 
location- independent velocity vector.

In addition, reliable location- specific 
activity is exhibited by two thirds of the 
neurons in the MEC outside the grid cell 
population35,85. These ‘non- grid spatial cells’ 
remap the locations of their firing fields 
under the same conditions that produce 
rate remapping in individual fields of grid 
cells33,35. These coherent changes suggest 
that non- grid spatial cells are integrated 
within the grid network and may even 
provide an input to grid cells. Together, 
the location specificity of both grid cell 
firing and non- grid cell firing indicates 
that position- specific input may be a strong 
determinant of MEC activity, which is not 
anticipated by the PI- CAN model.

Non- spatial data unanticipated by the 
PI- CAN model. Despite the historical 
focus on spatial navigation, there is 
increasing evidence that neurons within the 
hippocampal formation exhibit selective 
responses in domains other than physical 
space. In the MEC of rats, both grid cells and 
head direction cells recorded in open arenas 
fire at specific points within a sequence of 
tones during a stationary auditory task86. 
MEC neurons also fire sequentially in time 
during delay periods87,88, indicating that 
the grid and head direction networks can 
be engaged outside physical navigation. 
In both humans and non- human primates, 
grid- like firing patterns have been observed 
in entorhinal neurons during virtual spatial 
navigation89 and during visual exploration 
of a scene90,91, in the absence of physical 
translocation and even of eye movement91. 
Finally, studies in humans using functional 
imaging and electroencephalography 
have observed mesoscopic signals that are 
suggestive of grid- like activity, not only in 
response to virtual spatial navigation92–95 
but also in response to the progression 
of ordered visual stimuli93,96–100.

In the hippocampus, non- spatial 
response properties are even more well 
established across multiple modalities101–103 
and across species7,104,105. Neurons in 
CA1 respond in tasks with continuously 
changing stimuli, showing place- like activity 
when presented with a series of tones86 or 
concentration gradients from one odour 
to another106. In tasks entailing a sequence 
of discrete odours or tones, hippocampal 
neurons respond depending on the order  
of the stimuli presented107–110. As in the 
MEC, hippocampal sequential tuning has 
also been shown for the temporal structure 
of a task111, corresponding to elapsed time 
during forced delay periods110,112–117 and to 
a specific number of laps around a track118. 
Together, these findings demonstrate that 
both continuous and discrete sequences 
of events can evoke hippocampal and 
entorhinal firing even in the absence 
of translocation through space.

The collection of multisensory responses 
in the hippocampal formation has led 
some to hypothesize that these regions map 
non- spatial featural dimensions15,16,94,96,99,119,120. 
Several of these theories leverage aspects of 
the PI- CAN model to propose that the grid 
cell system can encode feature metrics15,16. 
One example of this proposal is the sugges-
tion of a ‘car space’, with MEC grid cells  
coding for a 2D space of car weight versus  
engine power and hippocampal place cells 
coding for individual categories of cars15.  
In this framework, grid cells serve as a 
measurement system for regularly spaced 
intervals within continuous feature axes, 
while place cells specify unique feature 
identities15. However, this framework 
requires mechanisms that deviate from the 
physiological CAN dynamics that underlie 
the PI- CAN model (Box 2). Specifically, rela-
tionships within this type of feature space 
are not defined by experiencing transitions 
within the space through time. Instead, the 
feature space maps similarity of elements 
on the basis of featural identifiers, akin to 
the process of categorization. A structural 
relationship (for example, an orange is big-
ger than a lime but is of size similar to that 
of an apple) in the feature space framework 
is an attribute built on the relative similarity 
of the neuronal representation (via the popu-
lation firing rate, for example). By contrast, 
mechanisms of path integration necessitate 
that neural activity moves through the net-
work in time in concert with ongoing expe-
rience (Box 2). This temporal contiguity is 
preserved in certain abstract spaces that have 
been tested experimentally, such as the ‘bird 
space’ explored in one study96. In this study, 
the participants learned about relationships 
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between features in the space by viewing 
videos of birds’ necks and legs changing con-
tinuously, thus linking features sequentially 
in time. In the following section, we propose 
a revised CAN model to explain why tem-
poral contiguity is a critical aspect of spaces 
learned and represented in the hippocampal 
formation.

A revised CAN model
Hippocampal input shapes activity in 
the MEC CAN. To address the gaps left by the 
PI- CAN model in explaining experimental 
data, we propose that the dynamics of the 
MEC attractor network are substantially 
shaped over time by sequential hippocampal 
cell input. Hippocampal neurons can track 
sequences of task- relevant stimuli, just 

as the activity of place cells continuously 
changes during movement in a maze, 
thereby bridging events within spatial and 
non- spatial experiences. With its prominent 
anatomical projections to the MEC and 
flexible responses across experiential 
modalities, the hippocampus is a strong 
candidate to provide informative drive to 
the MEC CAN. Because the location-specific 
variability of grid cells and the prevalence 
of non- grid spatial cells are not explained 
by the PI- CAN model, a velocity signal may 
provide only a component of the informative 
drive to the MEC, even in the context of 
navigation26,121.

Supporting a critical role for 
hippocampal input, grid patterns appear 
only after place cells achieve spatial tuning 

during development50,122–125. Moreover, 
inactivation of the hippocampus abolishes 
the 2D periodicity of grid firing126, although 
spike correlations remain intact between 
grid cells126,127. These findings suggest that 
local intrinsic connections help determine 
the order of spiking between grid cells, but 
hippocampal input is required for periodic 
spatial patterns during behaviour. Some 
advocates of the PI- CAN model interpret 
this to mean that the hippocampus is 
providing uniform excitatory drive to 
the entire grid network126. However, we 
advocate that the hippocampus provides 
non- uniform, event- specific input that can 
shape the flow of activity through the MEC 
CAN. For example, the unique ensembles 
of hippocampal place cells that are active 

Box 2 | Incongruity of abstract feature spaces with CAN dynamics

to assess whether abstract feature spaces could be supported by the 
mechanisms proposed to underlie the medial entorhinal cortex (mec) 
continuous attractor network (cAN), let us imagine a 2D conceptual space 
of fruit. In this space, fruit diameter lies on one dimension and tartness  
on the other dimension. For the hippocampal formation to code this ‘fruit 
space’, the fields of each grid cell would span the measurement range  
of each fruit dimension (for example, smaller to larger diameter), and 
hippocampal neurons would be selectively active for a subclass of fruit, 
such as lemons and limes. Generalizing the path integration cAN (PI- cAN) 
model to this space utilizes the model’s assumed metric relationship 
between features of the physical world and the firing patterns of grid cells 
and place cells. However, to adapt the mechanistic framework from the 
PI- cAN model to fruit space, two key model constructs must be reconciled, 
each creating unique challenges in featural domains.

First, measurements of change along the feature axes (that is, Δx and Δy) 
(see the figure, part a) must be conveyed to the grid network through 
afferents specifying information about each feature, analogous to a 
velocity signal containing direction and speed. these inputs must either 
bypass the velocity input to advance the attractor state through the cAN 
independently or somehow convert the relationship between abstract 
features, such as perceived differences in tartness between fruits, to  
a velocity signal (see the figure, part b). the possible mechanisms for 
converting sensory inputs specific to each feature to a velocity- like input 
are unclear. to drive the cAN independently of this conversion would 

require a combinatorial explosion of extrinsic inputs to drive mec 
representations of all possible abstract spaces. moreover, to decode 
measurements of fruit diameter and tartness from the firing of a grid field, 
the network must generate regular field spacing that reflects metric 
intervals in the feature space. Such fixed regularity is often absent, even  
in physical space outside symmetric open- field environments.

Second, to measure displacements in the feature space using PI- cAN 
mechanisms, activity must move through successive states of the cAN. 
because activity states evolve continuously over time (that is, Δt), rather 
than shifting in large jumps across the manifold, updates require a ‘path’ 
through the space that can be ‘path- integrated’ through time from the 
velocity analogue. to construct such a path, elements in the space must  
be ordered in time. It is unclear how feature spaces that lack temporal 
contiguity between their elements would correspond to updates in the 
cAN — for example, does defining the tartness relationship between 
limes and apples traverse a path through oranges and lemons (see the 
figure, part c)? While landmark inputs alone (such as inputs specific to 
limes) can shift the network activity towards the landmark44, these inputs 
must be used in concert with a continuously evolving input, such as 
velocity in the PI- cAN model, to drive the activity through intervening 
states. together, these constraints imposed by the mechanisms in the 
PI- cAN model limit the scope of abstract spaces that can be plausibly 
mapped according to our current understanding of network dynamics  
in the mec.
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at each location in an environment may 
drive location- specific variability in grid 
cell firing33,81,83,128, as well as the specificity of 
non- grid spatial patterns35. This hypothesis 
aligns with computational models that show 
that location- based inputs can generate 
grid patterns50,51,128–137, even in the absence 
of an explicit velocity input51,128,131,134–137. 
Thus, the ability of ordered hippocampal 
activity to generate periodic grid cell firing 
could be particularly critical in non- spatial 
circumstances without locomotion.

The MEC–hippocampus loop drives 
network activity in time. We hypothesize 
that interactions between the hippocampus 
and MEC reciprocally drive updates of 
the attractor state within each region 
(Fig. 2a). In this model, the bidirectional 
communication is temporally coordinated 
by the theta rhythm138, which reflects 
windows of disinhibition that create 
discrete epochs of activity within each local 
network139. Hippocampal and MEC theta 
oscillations are offset from each other, 
such that spiking in the MEC occurs out 
of phase with spiking in the hippocampus77 
(Fig. 2b). Hippocampal input is thus well 
timed to prime the flow of MEC CAN 
activity within each theta epoch, because the 
bulk of CA1 spiking occurs just before 
the rhythmic disinhibition of MEC neurons. 
As each CA1 neuron has anatomically 
restricted axon terminals in the deep layers 
of the MEC140–142, which in turn generate 

non- uniform drive to the superficial layers143 
(Box 1), the population of CA1 neurons that 
is active during each theta cycle is poised to 
bias the directional flow of activity through 
the grid attractor network. This possibility is 
supported by the loss of grid cell periodicity 
when either hippocampal inputs126,144 or 
medial septal inputs supporting theta42,43 
are removed, as well as computational 
work demonstrating that theta- timescale 
hippocampal inputs can generate MEC grid 
patterns134.

The reciprocal projections from the 
MEC back to the hippocampus complete 
a loop, allowing the MEC to mutually 
shape the activity within the hippocampus. 
Under the synchronizing guidance of the 
theta oscillation, these two regions alternate 
between speaker and listener. As each 
region responds to its input, it primes 
the subsequent state in its counterpart, 
inextricably binding the activity across 
regions as a progression of handshakes across 
time. This reciprocal communication may 
even explain the observation of sequential 
activity in the loop in the absence of changing 
sensory input to the hippocampal–entorhinal 
system during delay periods87,113,114,145,146. 
Because the flow of states across time is 
inherent to the physiology of the network147, 
the activity of neurons throughout the  
MEC–hippocampus loop reflects a 
continuous link of events through time.

The proposed handshake between 
the hippocampus and the MEC may 

manifest itself on the fine timescale as 
the propagation of ‘theta sequences’ in 
each region. Hippocampal neurons display 
finely ordered spiking nested within a 
theta cycle148–150 mirroring the sequence 
of place cells that fire over the course of 
seconds as an animal traverses the 
environment (Fig. 2b–d). These theta 
sequences similarly track the progression 
of discrete events during non- spatial tasks109 
(Fig. 2e). Each hippocampal theta sequence 
thereby constitutes a time- compressed 
representation of a momentary trajectory 
through the experience150,151 (Fig. 2b–g). 
Because theta sequences project ahead of 
the animal’s current position, this activity 
is poised to guide the flow of activity 
within the MEC network152. While theta 
sequences have not yet been thoroughly 
characterized in the MEC (but see reF.61), 
computational models suggest that MEC 
theta sequences would arise naturally 
from theta- paced inhibition mediating 
CAN dynamics153. Moreover, individual 
MEC cells show spiking that is temporally 
organized by the theta rhythm (that is, theta 
phase precession)154, consistent with the 
existence of theta sequences. We hypothesize 
that as hippocampal input helps direct the 
entorhinal attractor through successive 
states, the MEC returns information 
to the hippocampus influencing the 
progression of the next theta sequence155 
(Fig. 2b). As theta sequences develop over 
the course of experience156 and have been 
linked to the retention of learned spatial 
information157–160, theta sequences in the 
MEC–hippocampus loop are well suited 
to support the representation of ordered 
events in episodic memory. Although some 
non- rodent mammals lack a continuous 
theta rhythm, temporally structured activity 
can nonetheless be observed relative to 
the underlying oscillation161–163. These 
observations point to compressed spike 
sequences, organized relative to a periodic 
or aperiodic carrier oscillation, as a general 
mechanism for updating attractor states 
across regions.

The MEC–hippocampus loop builds the 
topology of experience. We advocate that 
hippocampal input to the grid cell CAN 
shapes the progression of MEC activity in 
accordance with structured hippocampal 
firing around salient events. For example, 
place cells tend to shift their fields towards 
learned reward sites164,165, which could yield 
the changes in grid field spacing70 and firing 
rate33 that are observed when an animal is 
near recalled reward locations166. The shared 
variability in field density and firing rates 

Fig. 2 | Topological representations in the spike order of theta sequences. a  | The medial entorhinal 
cortex (MEC)–hippocampus (HPC) loop model for updates of network activity in each region. 
Information about velocity and salient events is proposed to influence the MEC continuous attractor 
network (CAN), which reciprocally interacts with the hippocampus, although this does not preclude 
a direct effect of these inputs on the hippocampus as well. b  | Theta sequences in the hippocampus 
and hypothesized theta sequences in the MEC. A trajectory (left) through an open arena (black arrow) 
passes through a sequence of place cells (top) and grid cells from a single module (bottom). Place cells 
and grid cells both exhibit ordered spiking on the theta timescale (right) that progresses in concert 
with movement through the maze. Vertical dotted lines mark theta cycle boundaries. Theta disinhibi-
tion is out of phase between the hippocampus and the MEC, allowing communication to alternate 
across regions. c–e  | MEC grid cells and hippocampal place cells fire as a rodent moves along a linear 
track (part c), runs continuously on a treadmill (part d) or progresses through a sequence of discrete 
sensory events involving odours and tones109 (part e). The grid cell firing patterns in part e are hypo-
thetical. As the animal progresses in position, time or events, neurons exhibit theta phase precession, 
shown for hippocampal cells as the transition of spikes from later to earlier theta phases. In each of 
these experiences, neuronal spikes are ordered within a single theta cycle (dashed arrow) according 
to the animal’s past, present and future. This spike ordering generates a topological graph of the expe-
rience, with each node of the topology corresponding to an ordered instance in the experience  
(bottom panels). When a linear track is stretched193 (part c) or when the time of a treadmill run is 
increased87,195 (part d), both grid cells and place cells demonstrate the capacity to rescale their firing 
fields (and, for grid cells, the distance between firing fields) to span the entire experience. Despite this 
field stretching, spike ordering is preserved within a theta cycle (bottom panels), preserving the top-
ological representation from the original to the stretched experience by maintaining temporal rela-
tionships between neurons. Further work is needed to determine the scalability of topological 
representations for discrete sequences of events. Parts c and e adapted with permission from reF.109, 
Elsevier. Part d adapted with permission of AAAS from reF.195. © The Authors, some rights reserved; 
exclusive licensee AAAS. Distributed under a CC BY- NC 4.0 License (http://creativecommons.org/
licenses/by- nc/4.0/).
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across the MEC–hippocampus loop reflects 
mnemonic properties as well. MEC field 
rates are modulated by route destination or 
origin during goal- directed movement in 
linear environments61,167,168 in concert with 
similar firing rate changes in hippocampal 
neurons167,169–171. Collectively, the evidence 
of parallel flexibility in hippocampal 
and MEC firing patterns suggests that 
the hippocampus supplies structured 
informative drive to the grid network, 
particularly around behaviourally relevant 
locations and events.

In return, the MEC grid network is 
situated to provide a key input to the 
hippocampus, allowing it to bridge 
the gaps between salient stimuli with 
reliable sequences of activity172. It was 
once thought that hippocampal place 
cells read the MEC grid code to index 
specific locations, but numerous studies 
using lesions155,173–176, optogenetics146,177,178 
and pharmacology83,179–181 have now 
demonstrated that hippocampal neurons 
retain the capacity for forming place 
fields irrespective of grid cell input. 
Instead, altering grid cell activity degrades 
hippocampal cell tuning in the middle of 
large arenas157,182,183 and during long delay 
periods146,157 when the animal is spatially 
or temporally far from salient landmarks. 
These studies suggest that grid cell input 
to the hippocampus is key to structuring 
hippocampal activity in the absence of 
salient stimuli. This role of the MEC may 
be particularly vital in novel settings, 
before the structure of the environment 
has been learned. By supplying a regularly 
structured input from the beginning of 
learning, the periodicity of the grid cell 
CAN may help generate new sequences of 
hippocampal activity that bridge disparate 
landmarks172,184,185. In this way, the grid cell 
CAN could provide a temporal scaffolding 
onto which situation- specific activity can be 
linked across time, preserving the ordinal 
structure that supports a topology.

Bridging salient stimuli through the 
MEC–hippocampus loop. For grid network 
activity to link events into a topological 
representation of a given experience, 
the periodic scaffolding provided by the 
grid network must be anchored to salient 
landmarks that demarcate the experience. 
Salient events may therefore influence grid 
cell CAN dynamics, similar to the manner 
in which boundaries have been proposed to 
anchor the location of MEC attractor states 
to the external environment45,66,186. During 
spatial exploration, it is thought that velocity 
inputs drive the flow of activity within 

the grid cell CAN during locomotion, but 
encounters with walls, signalled by MEC 
border cells or hippocampal place cells, 
pull the flow of activity towards the state 
associated with the landmark44,66. In this 
way, the MEC attractor state becomes 
anchored to the physical environment, 
thereby ensuring reliable spatial activity45,186. 
However, landmarks do not need to be 
physical walls to provide an anchoring 
stimulus. The hippocampal population 
over- represents the start and end points of 
virtual linear tracks106,187,188 and non- spatial 
task sequences86,109, and thus could entrain 
the grid cell CAN to event boundaries 
by virtue of focal increases in excitation 
from the hippocampus. Reward would 
act as a particularly salient feature to alter 
the structure of the topology, anchoring the 
MEC grid pattern33,70 and the hippocampal 
population activity164,165 to salient goal 
locations. Updating by the hippocampus with 
regard to salient landmarks can thus help 
provide waypoints that regulate the flow of 
activity through the grid cell CAN. In turn, 
the MEC facilitates the ability of both regions 
to form stable patterns of activity, especially in 
novel settings. Together, these interactions 
in the MEC–hippocampus loop generate a 
topological representation of experience that 
is foundationally defined by the link between 
the progression of neural activity and the 
temporal order of events in the world.

Experimental results are consistent with 
the hypothesis that the MEC–hippocampus 
loop constructs a topological representation. 
Importantly, topological structure is 
preserved despite changes in spacing between 
salient events that define the topology189. 
Accordingly, the grid pattern dynamically 
stretches in proportion to the displacement 
of a moveable wall63–65,68,69,190 — a finding 
that has been mirrored in hippocampal 
place cells in an open field191. Furthermore, 
experiments using expandable192–194 
and reconfigurable10 linear tracks have 
demonstrated that hippocampal cell firing 
corresponds to the relative order of events as 
opposed to precise distances (Fig. 2c,f). The 
flexibility of this topological code is evident 
in MEC and hippocampal neurons that 
rescale their responses to span the duration 
of a forced delay period88,195 (Fig. 2d,g). 
These findings suggest that the topology 
can be rescaled relative to the progression 
between salient events rather than providing 
veridical measurements of space or clock 
time. Indeed, neither elapsed time nor 
distance travelled definitively captures the 
specificity of grid cells and hippocampal 
neurons during treadmill runs within forced 
delay periods87,114. By adapting to changing 

intervals between salient events37,44,63–66,68,69, 
the grid cell CAN would aid in guiding the 
flow of activity in the hippocampus despite 
variability across individual experiences.

Although representations are malleable 
in response to manipulations of time or 
space, the fine spike timing between neurons 
remains intact within theta cycles193,195, 
indicating that the topological structure is 
maintained on the theta timescale despite 
the stretching that occurs on the behavioural 
timescale. This preservation of spike order 
between cells suggests that theta packets 
reflect an ordinal structure that is stored 
in the hippocampal formation, raising the 
possibility that the rescaling seen in time 
or space is an emergent property of pacing 
the progression of theta sequences11,196. 
This pacing is likely determined by the 
combination of inputs to the MEC–
hippocampus system. As described in 
the PI- CAN model, inputs to the MEC 
conveying information about speed and 
allocentric orientation contribute to the flow 
of activity in the grid cell CAN31,42,43. These 
velocity inputs may even help to ‘label’ each 
attractor state with metric information12,13,197, 
resulting in activity that can reflect a spatial 
code. Complementing inputs that reflect 
self- movement information, recent research 
has elucidated the additional importance 
of visual perception for attractor network 
activity74. Just as landmarks have been 
proposed to drag the flow of the attractor44,66, 
the MEC–hippocampus loop may be 
updated by perceptual information reflecting 
the approach or expectation of a salient 
event. As the spatial trajectories represented 
in theta sequences are known to be bounded 
by salient features198,199, perceptual updates 
of the network may shape the rate of 
sequence progression. If the approach to 
an upcoming salient event can be predicted 
by a continuously evolving input, then we 
would expect to see a continuously changing 
set of theta sequences, as is the case with 
running on a linear track (Fig. 2c). However, 
if a task is defined solely by discrete events 
that progress in a punctuated manner, 
then we would expect the attractor to be 
drawn to these salient features and likewise 
demonstrate piecewise advancement 
through theta sequences, as is the case with 
such tasks109 (Fig. 2e). In either case, the 
progression of activity is always linked across 
time as a topology that binds experiences of 
the world within an ordinal structure.

Temporal contiguity defines the ordered 
topology. The reciprocity between the 
hippocampus and the MEC illuminates 
the function of the hippocampal formation 
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as building topological representations 
of experience7,9–14. As events unfold in 
time, the states of the MEC attractor are 
continuously updated in concert with 
the ongoing activity of the hippocampus. 
Because each state flows from a progression 
of previous states, the information supported 
by this network inherently incorporates 
temporal adjacency. Continuous attractor 
models that support path integration 
similarly track movement through physical 
space according to temporal adjacency28, 
and differ only by rigidly mapping the 
neural activity to measurements of 
physical distance. In casting the circuitry 
of the hippocampal formation as a 
sequence generator11, the need for a priori 
dimensionality or metric relationships 
is avoided. Instead, the topology is built 
through synaptic plasticity between neurons 
that are repeatedly activated in a particular 
order during learning, similar to existing 
theories highlighting the importance of 
ordered spiking11,151,196. In this topological 
framework, the grid network supports 
ordered relationships between elements 
of experience without needing to measure 
exact feature quantities. Our proposal thus 
synergizes the activity exhibited by the 
MEC and the hippocampus during spatial 
navigation with the roles of these structures 
in forming episodic memories.

Once this topological representation is 
built, it can be used to facilitate decision- 
making. States within the topology span 
the sequence of events from task initiation 
to the outcome, similar to the progression 
of states described in reinforcement 
learning models136,166. With decision 
points in the topological graph anchored 
to salient features, the network would be 
able to propagate a series of states from 
the decision point to the goal to aid in 
choice61,167–169,171,172. Consistent with a role 
in decision- making, representations across 
the MEC–hippocampus network that reflect 
future choices61,167–169,200 manifest themselves 
on the theta timescale in both spatial 
tasks201,202 and non- spatial tasks109. Leading 
up to a choice, the representations of possible 
futures can even alternate on successive theta 
cycles201, suggesting that neuronal sequences 
mediate cognitive access to multiple possible 
outcomes via the task topology.

The topological interpretation also 
suggests that tuning in non- spatial tasks 
does not rely on particular stimulus features 
(such as auditory frequency). Instead, 
hippocampal and entorhinal neurons 
encode the position of the stimulus in 
a sequence. Such a sequential topology 
can be constructed from stimuli that are 

either continuously changing in time28,86,106 
or discretized94,105,109, as punctuated 
multimodal events are likewise represented 
by hippocampal tuning and compressed 
into theta sequences109 (Fig. 2e). While 
individual neurons may show specificity 
for particular odours or sounds during 
these tasks108–110, we advocate that tuning 
arises from the association of individual 
stimuli with specific transition probabilities 
in the sequence136 rather than detection of 
the sensory features of the stimulus. Our 
topological model therefore differs from 
feature space proposals (Box 2), which 
cast the hippocampal formation more 

as a semantic organizer that determines 
relationships between objects on the basis 
of measurable feature qualities15,16. Instead, 
given the accumulating evidence that the 
MEC–hippocampus network operates as 
a CAN, we highlight its defining attribute 
as the sequential progression of network 
activity through adjacent states over time. 
In sum, abstract feature spaces (Box 2) 
lacking temporal contiguity between 
neighbouring elements would not be 
supported by the model mechanisms we 
propose here.

Critical aspects of our proposal are 
consistent with recent studies that have 

Box 3 | Testable predictions of the revised CAN model

We propose that the medial entorhinal cortex (mec)–hippocampus loop supports topological 
representations based in temporal contiguity. Here we suggest experiments to test several key 
predictions of the model.

Robust communication across the MEC–hippocampus loop manifests itself on the theta 
timescale
If large ensembles of neurons were simultaneously recorded in the mec and cA1 of the 
hippocampus, this model would predict several findings. First, theta sequences should exist within 
the mec. Second, distortions in grid field patterns near reward sites should correspond to a 
concentration of fields in hippocampal neurons. third, trajectories decoded from the population 
activity on each theta cycle would be similar across regions, including cases where theta 
sequences sweep ahead towards goals200,201. Fourth, disruption of firing order within hippocampal 
theta sequences via localized manipulation (for example, see reF.158) should also disrupt the 
structure of activity within the mec, even though the aggregate hippocampal input will remain 
similar (see reF.126).

Order of stimulus presentation shapes the responses to individual stimuli, even if the 
featural qualities are the same
We predict that if an animal were trained to advance a continuously changing series of tones86 
involving, for example, repeats of a tone within the sequence, the mec–hippocampus network 
would exhibit unique responses to each presentation of the tone. this result would strongly 
suggest that spiking is driven by sequential order informed by the history of experience, whereas 
similar responses to each presentation of the tone would suggest that spiking is driven by featural 
measurements. the results would inform the interpretation of similar phenomena observed in the 
spatial domain167,169 and with discrete sequences108.

Links in the topology depend on temporal contiguity
virtual mazes offer the possibility of teleporting across space, thereby allowing the animal to travel 
continuously through time while experiencing a discontinuity in space. We would expect the 
topology to smoothly link the two points of teleportation197, much like adjacent locations are 
represented by place cells. We would also expect theta sequences to extend across the points 
of teleportation but not through the intervening positions, since traversing the intervening space 
is not necessary to connect the two nodes in the topology. these expectations contrast with the 
predictions of a path integration framework, which would allow interpolation of shortcuts via 
euclidean geometry.

Remaining open questions:
• Are navigational inputs privileged in driving the mec attractor? Does the strength of 

navigational inputs vary across species in relation to increases in cognitive flexibility?

• Is the intrinsic circuitry of the grid cell continuous attractor network (cAN) static, or can novel 
sequences of grid cells be formed through plasticity?

• How do extrinsic cortical afferents, such as those from the prefrontal cortex, influence activity 
in the MEC CAN? Which inputs inform MEC activity around goals and salient features according 
to task demands?

• How do subpopulations and subcircuits of the hippocampus and the mec (for example, cA1 
sublayers, the trisynaptic pathway and cA1 versus subiculum input to the mec) contribute to the 
computations in the mec–hippocampus loop?

• What happens to attractor dynamics in the absence of a continuous theta rhythm, either during 
waking immobility or in primate species in which theta occurs in bouts?
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formalized the coding of non- spatial 
domains without relying on feature 
measurements. One of these approaches is  
a model known as the Tolman–Eichenbaum 
machine (TEM), which dissociates the 
representation of structural relationships 
in the MEC from their binding to sensory 
features in the hippocampus203. Similarly 
to experimental training paradigms, the 
TEM must be trained through ordered 
presentation of task stimuli to generate 
grid firing patterns that are consistent with 
structural relationships after learning. In this 
way, our emphasis on temporal contiguity 
aligns well with this model, although 
temporal progression is not an explicit focus 
of the TEM. However, we suggest that the 
MEC and the hippocampus work together 
to learn structure, while the TEM advocates 
that the MEC has a special role in abstracting 
and storing relational structure. Despite this 
difference, both the TEM and our model 
are also parsimonious with work proposing 
that hippocampal place cells represent 
predicted future states136, or successor 
representations135,136,204,205. In simplified 
terms, the successor representation model 
posits that hippocampal firing signals 
how much a current state predicts that 
the agent will occupy future possible 
states136. A topological representation 
storing the connectivity between states 
in an experience is highly compatible 
with both this predictability and the 
requirement for learning inherent in 
the successor representation model. 
Furthermore, the successor representation 
model highlights the ability of a topology 
to facilitate decision- making at any step, 
because the agent learns the transition 
probabilities from each state to the outcome. 
The commonalities between the TEM 
and the successor representation model 
are likewise compatible with multiple 
past studies advocating hippocampal 
topological representations9,12–14,206–208 as 
well as the foundational notion of relational 
memory7,209.

Our proposal raises several testable 
predictions (Box 3) and complements 
previous studies in three important ways. 
First, we suggest a biological implementation 
of the MEC–hippocampus network’s ability 
to construct a topology through reciprocal 
communication organized by the theta 
rhythm. Second, we emphasize temporal 
contiguity in the information represented 
topologically, aligning this function 
more closely with learning sequences 
than learning featural relationships15,94,210. 
Third, we unite a topological framework 
with CANs, updating the hypothesized role 

of the grid network to include functions 
beyond allocentric spatial navigation.

Conclusions
We propose that the interplay between 
the hippocampus and the MEC works 
synergistically to build ordinal topologies 
that are based on experience. While the 
velocity inputs in the PI- CAN model may 
be sufficient to drive the MEC attractor 
network during navigation with few salient 
features, the hippocampus is ideally suited to 
bind the MEC representation to important 
elements of experience in the order they 
occur. We advocate that the function of grid 
cells is best interpreted through the lens of 
activity across the MEC network, rather 
than the patterning of spikes from individual 
cells in relation to an experimenter- chosen 
predictor. Under this broadened scope of 
entorhinal–hippocampal function, moving 
through physical space is just one example of 
progressing through a topology. Importantly, 
correspondence to measurements of physical 
or abstract spaces would be incidental to the 
necessary relationship between the temporal 
structure of experiences while moving 
through space. Recasting the hippocampal 
formation as a builder of topologies 
comports well with the role of this region 
in linking a series of events to construct 
new memories, and potentially resolves the 
tension between the navigation and memory 
literature.
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