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SUMMARY

We encounter theworld as a continuous flow and effortlessly segment sequences
of events into episodes. This process of event segmentation engages working
memory (WM) for tracking the flow of events and impacts subsequent memory
accuracy. WM is limited in how much information (i.e., WM capacity) and for
how long the information is retained (i.e., forgetting rate). In this study, across
multiple tasks, we estimated participants’ WM capacity and forgetting rate in a
dynamic context and evaluated their relationship to event segmentation. A U-
shaped relationship across tasks shows that individuals who segmented the
movie more finely or coarsely than the average have a faster WM forgetting
rate. A separate task assessing long-term memory retrieval revealed that the
coarse-segmenters have better recognition of temporal order of events
compared to the fine-segmenters. These findings show that event segmentation
employs dissociablememory strategies and correlateswith how long information
is retained in WM

INTRODUCTION

Event segmentation is the process of discretizing a flow of events into episodes (Zacks et al., 2007; Zacks

and Swallow, 2007). It is done naturally even without instructions (Jafarpour et al., 2019). Event segmenta-

tion is thought to be fundamental in shaping cognitive processes such as working memory (Kurby and

Zacks, 2008; Radvansky, 2017; Richmond et al., 2017). Current event segmentation models posit that work-

ing memory tracks the flow of events to determine the segments, and within an event segment WM inte-

grates information and retains ‘what is happening now’ (called event models; Kurby and Zacks, 2008; Sar-

gent et al., 2013). An event segment is thought to end when a perceived event does not match the

expectations of what would proceed from a prior flow of information (Bein et al., 2020; Franklin et al.,

2020). However, working memory limitations may contribute to event segmentation. A working memory

system that fails to retain information must update the event model often or utilize other strategies to

compensate for its limitations. It is known that people who segment the flow of events in a standard

way, that is, as defined by the experimenter, have better working memory performance than those with

a discrepancy in event segmentation (Karuza et al., 2019; Sargent et al., 2013).

It is not clear what aspect of working memory is linked to event segmentation. Here, we examined the link

between the number of segmented events and working memory limitations. We focused on two indepen-

dent aspects of working memory: the amount of information retained and the duration of maintenance

(Baddeley, 2012, 2003; Bays and Husain, 2008; D’Esposito and Postle, 2015; Oberauer et al., 2018). The first

factor, how much information can be held in memory, defines working memory capacity (Bays et al., 2009;

Burgess and Hitch, 1992; Cowan, 2010; Vogel and Machizawa, 2004). The other factor, how long the infor-

mation persists in the face of time and interference, is measured as the working memory forgetting rate

(Baddeley, 2012; Collins and Frank, 2012). A challenge in quantifying these limitations is that other memory

systems, such as long-term memory, can also contribute to the accuracy of working memory (Jafarpour

et al., 2017; Rose et al., 2016; Zokaei et al., 2014). In this study, we implemented a working memory asso-

ciation learning task, designed by Collins and Frank (2012), which disentangles working memory from other

forms of learning including episodic memory. The task requires learning associations between images and

actions in blocks of variable image set sizes (Figures 1B and 1C). The task allowed us to computationally

estimate the workingmemory capacity and forgetting rate in each participant. Wemodeled the association

learning behavior with a dynamic mixture of learning and working memory components (adapted from

Collins et al. (2017)). This reinforcement learning and working memory (RLWM) model and the task
iScience 25, 103902, March 18, 2022 ª 2022 The Authors.
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Figure 1. Experimental design: The experiment consisted of four parts, the first two of which are depicted here

(A) Temporal memory test: At encoding (left), participants watched two muted movies (three frames from one movie is

shown). At retrieval (right), participants saw two movie frames and determined their temporal order by pressing the left or

right key. There were 35 temporal order questions per movie.

(B) Association learning task: Participants performed a block-design association learning task. In each block, participants

learned the association between a set of images and actions by trial and error. There were three possible actions (key 1, 2,

or 3) and feedback was provided. The image set size varied across blocks, ranging from 2 to 6.

(C) Three example trials. ‘Delay’ parameter quantifies the number of intervening trials from the last time the stimulus was

encountered. The last two parts of the experiment were segmentation and free recall tasks
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characterize working memory used in dynamic contexts that involve multiple memory systems. For that

reason, we considered it to be suitable for relating to potential working memory use in dynamic naturalistic

experiments where multiple memory systems may also be engaged, such as naturalistic event

segmentation.

The RLWMmodel parameterizes working memory limitations as the probability that the stimulus-action as-

sociation can be kept in working memory and can be used accurately for choosing the rewarded associated

action in the future. The association learning task manipulates working memory limitation with discrete set

sizes and delays; hence, the model approximates the working memory resource limitation to the number of

retained associations, akin to the slot model, ranging from 2 to 6 (Cowan, 2000; Ma et al., 2014). Accord-

ingly, the probability that the correct stimulus-action association is available in working memory depends

on the working memory capacity C and set size ns. Specifically, if the set size is within capacity, the model

makes maximal use of information in WM, but if the set size is larger, information in WM contributes less to

choices. Items are stored in WM according to the probability C
ns
. The working memory forgetting rate in

RLWM approximates how fast the memory of the retained association is forgotten when facing new stimuli.

The WM forgetting rate indicates how fast the probability of selecting a correct association decayed to the

chance level ( 1
na
, where na = 3 is the number of possible actions).

Traditionally, event segmentation has been studied with experimentally designed boundaries, where a

change in an associated stimulus, such as the background image or the semantic category of a sequence

of images, determines a new segment (DuBrow and Davachi, 2013; Ezzyat and Davachi, 2014), or in a

naturalistic stream of events the expected event boundaries are defined by the experimenter (Sargent

et al., 2013; Speer et al., 2003, 2007). In these cases, event segmentation is discussed as the agreeability

of an individual’s segmentation with the predefined event boundaries. The empirical data, however, show

that the segmentation of a naturalistic sequence of events is more subjective. Although event
2 iScience 25, 103902, March 18, 2022
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segmentation can be modulated to a fine or coarse grain through instructions (Sargent et al., 2013; Speer

et al., 2007), across a population, individuals differ in how many events they identify (Jafarpour et al., 2019;

Sargent et al., 2013; Zacks et al., 2006). For example, the maximum agreeability in event segmentation in

Speer et al. (2003) was at 80% (n = 11) and in Jafarpour et al. (2019) was at 60% (n = 80). Here, we inves-

tigated the source of individual variability in event segmentation without assuming predefined event

boundaries.

We hypothesized that subcomponents of memory are linked to the number of identified boundaries in a

flow of events (i.e., the number of events). One possibility is that infrequent segmentation overwhelms

working memory storage, resulting in faster forgetting and poor subsequent memory of events. Another

possibility is that limited working memory constrains information retention leading to frequent segmenta-

tion and utilization of other memory systems such as long-term memory. It is evident that event segmen-

tation impacts episodic memory (DuBrow and Davachi, 2013, 2014; Ezzyat and Davachi, 2011, 2014; Tubridy

and Davachi, 2011), event boundaries are more memorable than other events, and remembering the tem-

poral order of events across event boundaries is more difficult than within the event segments (Heusser

et al., 2018; Horner et al., 2016). We predicted that frequent event segmentation would enhance long-

term memory and diminish temporal order memory.

We studied the relationship between event segmentation and working memory by administering two in-

dependent tasks (a movie segmentation task and a working memory/association learning task) to healthy

participants (part 1 of data collection was conducted in the lab and part 2 was conducted online because

of COVID-19 mitigation plans; Figure 1). Participants watched a movie and were subsequently tested on

their memory. They later watched the same movie and reported subjective event boundaries. We allowed

the individual to utilize their natural strategy for event segmentation. All movies were novel (sound off)

animations with simple illustrations (Figure 1). We selected movies with different storylines: the storyline

of one of the movies was nonlinear so that interchanging the epochs of the movie did not affect the story,

the other movie had a linear storyline with noninterchangeable epochs (see STAR Methods for the story-

lines). Including both linear and nonlinear storylines allowed us to observe whether individual variability in

event segmentation is because of utilizing stories, such as schematic knowledge of the story (Bower et al.,

1979), or whether segmentation variability is independent of story knowledge (Sargent et al., 2013). The

study also included the association learning task with variable association set sizes (Collins et al., 2017).

We used the described RLWM model to estimate the participant’s WM capacity and forgetting rate.

Finally, participants performed a temporal order recognition task and wrote a paragraph about the

movies, i.e., a free recall task.
RESULTS

Number of determined event boundaries has a U-shaped relationshipwith theWM forgetting

rate

Behavioral results for individual tasks were consistent with previous studies. In particular, we replicated the

established observation that RLWM provided the best fit compared to reinforcement learning (RL) models

without a workingmemory component (Figure S1). We focus here on cross-task results. The cross-task com-

parison showed a U-shaped relationship between the variation in the total number of determined events in

the movies and the working memory forgetting rate (mixed-effect Quadratic F(1,56) = 5.7, p = 0.02; linear

component F(1,56) = 2.73, p = 0.1, where F-statistical value is defined as Mean Square divided by mean

squared error; Figure 2A), but there was no linear or quadratic relationship between working memory ca-

pacity and the number of events (mean capacity = 3.38 (SD = 1.10); mixed-effect linear fit p = 0.45; quadratic

fit p = 0.42).

Separately studying the data collected in the lab (part 1, n = 32) and online (part 2, n = 27), we observed the

U-shaped relationship in the part 1 (Quadratic F(1,29) = 12.9, p = 0.001; linear fit F(1,29) = 0.085, p = 0.77),

and the right tail of the U-shaped in part 2 (Quadratic F(1,24) = 0.16, p = 0.68; linear F(1,24) = 5.3, p = 0.029;

Figure 2A). The online data collection yielded a finer segmentation (t(57) =�4.27, p < 0.001; across the par-

ticipants, the total number of determined events was between 2 and 73 events; M = 29.13, SD = 18.12).

Nevertheless, in both part 1 and part 2, the number of events for the two movies correlated (Spearman

r = 0.85, p < 0.001; part 1: r = 0.86, p < 0.001; part 2: r = 0.77, p < 0.001). Therefore, subjective segmentation

strategy occurred irrespective of the movie’s storyline.
iScience 25, 103902, March 18, 2022 3



Figure 2. Cross-task results

(A) The total number of determined events and working memory forgetting rate had a U-shaped relationship. Top plots

show all data and bottom plots show data separately for part 1 and part 2 of data collection.

(B) The temporal order recognition accuracy decreased with the increasing number of determined events.

(C) The number of realis (factual verbs) at recall increased with segmentation. Each dot depicts a participant. The thicker

curves denote significant relationships (p < 0.05).
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The accuracy in temporal order memory decreases but the number of recalled events

increases with the increasing number of determined event boundaries

We also observed that the temporal order recognition correlated with segmentation performance, so that

with fine segmentation, the temporal memory was disturbed (Spearman ranked r =�0.33, p = 0.008; mixed-

effect model F(1,57) = 12.59, p < 0.001; Figure 2B; part 1: r = �0.27, p = 0.12; part 2: r = �0.31; p = 0.10).

There was no presumed number of events in the movies of this experiment to subsequently count the num-

ber of recalled events; instead, we used natural language processing measurements for counting the recall

length and number of factual ‘‘realis’’ events (Sap et al., 2020; Sims et al., 2019). We did not observe any

false memories or intrusions in the movie summaries, and we observed a relationship between event seg-

mentation and number of realis events (Spearman r = 0.38, p = 0.004; mixed-effect F(1,51) = 0.46, p = 0.49;

part 1: r = 0.37, p = 0.06; part 2: r =�0.09, p = 0.64; Figure 2C) but not the recall length overall (r = 0.068, p =

0.62; part 1: r = 0.34, p = 0.08; part 2: r = �0.15, p = 0.43).

In this study, part of the data was collected online because of the COVID-19 pandemic mitigation plan. The

online data collection was not conducted in a controlled environment and the long study was not optimal

for an online platform. To be consistent with the in lab experimental data, we excluded participants from

online data collection who performed poorly in comparison to the in-lab data collection, at any part of the

experiment to ensure that all the included participants were fully engaged (see the STAR Methods and

Figure S2 for details). We did not have any theoretical limitation on what an acceptable range of event seg-

mentation or recall length would be; therefore, similar to the part 1, in part 2 we only excluded the outliers

in segmentation and recall.
DISCUSSION

We observed a relationship between event segmentation, working memory forgetting rate, and subse-

quent memory performance. We used a newly-established task measuring the use of working memory in

a dynamic decision-making context (Collins and Frank, 2012) to estimate the participants’ working memory

capacity and forgetting rate. Using cross-task comparisons, we found that participants who segmented the
4 iScience 25, 103902, March 18, 2022
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movies into either fine or coarse segments compared to the average segmentation have a faster working

memory forgetting rate, as detected with a U-shaped relationship between segmentation and WM forget-

ting rate. Previously, Sargent et al., (2013) showed that event segmentation correlates with workingmemory

performance in reading span, operation span, and word-list memory tasks (Daneman and Carpenter, 1980;

Turner and Engle, 1989). In that study, event segmentation was assessed as the discrepancy from a norma-

tive experimentally assumed event boundary. In that case, the fine and coarse segmentation would have

been characterized with a low segmentation ability and poor workingmemory. The adopted workingmem-

ory tests in the previous study, however, could not clarify what aspect of workingmemory limitation is linked

to event segmentation. In this study, we found a relationship between event segmentation and working

memory forgetting rate. These findings suggest that event segmentation is related to the retention of

the flow of events, rather than the retention of information which would be limited by working memory

capacity.

At encoding, perception of event boundaries naturally engages the memory network (Jafarpour et al.,

2019) and increases recall performance (Newtson and Engquist, 1976; Pettijohn et al., 2016; Sols et al.,

2017). Furthermore, people remember the event-boundaries better than other events (Newtson and

Engquist, 1976). It has previously been shown that a fine-grained segmentation strategy benefits

source memory (Hanson and Hirst, 1989, 1991; Heusser et al., 2018). Consistent with these findings,

we also observed a higher number of realis events in narrated recall. However, with fine segmentation,

the contextual representation of a sequence is updated resulting in reduced access to the temporal

memory of events that occurred across event boundaries, i.e., ‘‘walking through doorways’’ effect (Du-

Brow and Davachi, 2014; Pettijohn and Radvansky, 2016). Congruent with this previous work, we

observed that temporal order recognition accuracy decreased with fine segmentation.

Computational models of event segmentation suggest that sequences are segmented based on pre-

dictions from prior knowledge about sequences of events, perhaps by utilizing stories (Hsieh et al.,

2014; Schapiro et al., 2013; Zacks et al., 2011), or the sequences of events are linked to a temporal

context that changes with event boundaries (DuBrow and Davachi, 2014; Franklin et al., 2020; Howard

et al., 2005; Lositsky et al., 2016; Radvansky and Zacks, 2011; Zacks and Swallow, 2007). Indeed, a

change in the story or temporal context with segmentation leads to less accessibility of memory of

temporal order of events across boundaries, and retaining the temporal context benefits temporal

memory (DuBrow and Davachi, 2014; Horner et al., 2016; Manning et al., 2011). Here, we showed

that working memory forgetting rate also plays a role in event segmentation. In a naturalistic setting,

retention can be attained by utilizing long-term memory or relying on a working memory system with

a slow forgetting rate.

An outstanding question concerns the causality of the relationship between working memory and event

segmentation. One possibility is that working memory is a primary cognitive mechanism and event seg-

mentation is determined by limits in working memory. Accordingly, participants with faster forgetting

rates use alternative mechanisms such as utilizing scripts or long-term memory to compensate (Keidel

et al., 2017). An alternative possibility is that event segmentation is a primary cognitive mechanism (Ong-

choco and Scholl, 2019; Radvansky, 2017; Richmond et al., 2017). In this case, participants who segment

more often lose access to the information from the previous events (Ezzyat and Davachi, 2014; Horner

et al., 2016) leading to a fast forgetting rate or to relying on storylines to keep a track of what happened.

A third possibility is that both working memory and event segmentation engage common cognitive

mechanisms, such as utilizing stories or scripts, as utilizing a script facilitates memory (Farag et al.,

2010; Gobet et al., 2015; Sargent et al., 2013; Zacks et al., 2010). For example, a phone number’s schema

enables effective segmentation and memory for a 10-digit number (Miller, 1956).

In conclusion, we observed that the working memory forgetting rate reflects individual differences in event

segmentation. A relationship between the number of determined events on one task and the forgetting

rate on another task suggested that participants with a faster forgetting rate used two different strategies

during encoding and retrieval that differentially affected temporal order recognition. Taken together,

these data suggest that working memory plays a key role in shaping event segmentation, and people

with faster working memory forgetting rates utilize alternative cognitive processes for encoding and

retrieval of events.
iScience 25, 103902, March 18, 2022 5
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Limitations of the study

The observed individual variability cannot be explained by the participants’ level of task engagement. In-

dividuals who identified fewer events potentially a less motivated group (coarse segmenters) performed

better in the memory recognition test. In addition, all participants’ memory and learning performances

were above chance. Nevertheless, additional studies will be needed to determine the scope of the relation-

ship between individual difference in event segmentation and utilizing stories or free recall. For example, it

would be noteworthy to study whether the observed link between segmentation and temporal order mem-

ory generalizes to other behavior such as generating stories and imagination.
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Deposited data

cross-task data OSF.io https://doi.org/10.17605/OSF.IO/XV4Z9

Software and algorithms

Script github.com https://github.com/annaja/iScience2022

MATLAB Mathworks https://www.mathworks.com/products/

matlab.html

jsPsych jsPsych.org https://www.jspsych.org/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Anna Jafarpour (annaja@uw.edu).
Materials availability

This study did not generate new unique reagents.

Data and code availability

The data and the analysis code have been deposited and are publicly available at https://github.com/

annaja/iScience2022. Any additional information required to reanalyze the data reported in this paper is

available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Part 1: 36 healthy and English-speaking adults (25 female) were recruited through the online University of

Berkeley Psychology Department Research Participation Program. Participants provided informed consent

and were compensated ($36 or 3 course-credits). The Office for the Protection of Human Subjects of the

University of California, Berkeley approved the study protocol. The mean age was 20.3 (SD = 1.9) and

ranged from 18 to 27. 29 of 36 participants performed the additional free-recall task (the data from the first

7 participants was not recorded due to a technical issue). All participants were right-handed by self-report.

We discarded one participant because she identified two standard deviations more events than the group

average but including her did not change the results. The minimum temporal order recognition accuracy

for the linear movie was at 66% and for the non-linear movie was at 54%. RLWM did not accurately model

the performance of three participants. The estimated learning rate was too high (a > 0.9, two standard de-

viations larger than the mean; M = 0.16, SD = 0.33) and the estimated mixture weight was too low (w0 <0.6;

M = 0.83, SD = 0.18) in the three participants, indicating that the working memory module of the model was

not functioning in a regime representative of cognitive working memory function.

Part 2: 101 healthy and English-speaking adults were recruited through the online University of Berkeley

Psychology Department Research Participation Program. They provided an informed consent and received

course credits for the participation. The study was run remotely by providing a link to the online task. Par-

ticipant’s ran the study at their desired time of the day. 98% of participants performed above 70% for the

last trials of learning trials for set size 2 (Figure S2). 50% of participants wrote something about the movies.

65.3% of participants performed the order of events in the linear (easier) movie for at least as well as the

worst participant performance in experiment 1 (at 66%; although theoretically, 50% accuracy would be

the chance level, without experimenter’s supervision, we could not assure that lower performance than

an in-lab result (experiment 1) would be from an active participation).

We did not have a theoretical limitation on howmany events are in the movies, therefore, we only excluded

the outliers. In part 2, 19 participants did not indicate any events in the movie and two participants were
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excluded for outlier number of events. Accordingly, 76% of participants had acceptable number of events.

Cross-tasks, 27 of participants fulfilled all tasks. There were 19 female (8 male), age ranged from 18 to 22

(two participants did not report their age, mean = 20 years, SD = 1.2). Together with in lab data collection,

we reported the results based on 59 subjects.
METHOD DETAILS

Part 1: The experiment ran on a desktop PC and a standard TFT monitor, in a sound-attenuated

recording room. It consisted of four parts. First, participants watched two novel mute animations

(each �3 min long) with differing storylines linear (interchanging the movie epochs hurts the story),

and non-linear (interchanging the movie epochs did not hurt the story, like Tom and Jerry animation).

They were instructed to watch the movies carefully because we would ask questions about them. The

types of storylines were identified by asking a group of naı̈ve observers about the interchangeability

of epochs of the movies.

There were 35 recognition memory tests per movie. At each test, subjects saw two scenes from a movie -

located on the left and right sides of the screen for 2 s. Then a prompt appeared asking the participant to

indicate the order of the scenes. Half of the prompts were asked which scene was ‘earlier’ or others asked

which scene was ‘later’, in a pseudo-random trial order (Figure 1). Participants used left or right arrow keys

to respond. The tested movie scenes were between 1.6 to 62 s for the non-linear movie (M = 16.66, SD =

17.27) and 1.6 to 48 s for the linear movie (M = 15.02, SD = 13.22).

The participant then performed a version of an association learning task (Figures 1B and 1C) to evaluate

working memory characteristics, namely working memory capacity and forgetting rate (Collins et al.,

2017). In this task, participants used their dominant hand to select from three possible actions when they

saw an image. The possible actions were pressing the J, K, and L keys from a keyboard (depicted as action

1, 2, and 3 in Figure 1). They used trial and error to learn the correct image-action association. The prob-

ability of an action being paired with an image was equal (1/3); thus, an action could pair withmore than one

stimulus. Participants learned the associations in 12 repetitions of each stimulus; the repetitions were

pseudo-randomly interleaved. This procedure repeated in a block-design and included 22 blocks (3 blocks

of set sizes 6, 5, and 4; 4 blocks of set size 3, and 6 blocks of set size 2). The stimulus set-size varied in each

block to manipulate the requirement for capacity-limited and delay-sensitive working memory (Figure 1C).

Participants studied the whole stimuli set at the beginning of each block.

The reward value for a correct response differed across stimuli; an incorrect response yielded no reward.

Only one action for a stimulus was correct and each correct stimulus-action association was assigned a

probability (p) of yielding a 2-point versus a 1-point reward, and this probability was either high (p =

0.80), medium (p = 0.50), or low (p = 0.20). We counter-balanced the probability within-participant and

blocks to ensure an equal overall value of different set sizes and actions. Participants had 1.4 s to respond.

The feedback was displayed for 0.5 s. There was an inter-stimulus interval of 0.5–0.8 s in which a fixation

cross was shown.

After performing the association learning task, participants watched the movies again; this time they

segmented the movies by pressing a spacebar to indicate the start of a new event. We instructed them

to press a key "whenever something new happened." We told the participants: "we want to segment

this movie into episodes", and we explained that segmentation could occur as often as they liked. The con-

sistency of frequency of event segmentation for each participant was determined across the three movies.

Finally, participants performed a surprise free recall test, where they were asked to write a paragraph

describing the story of each movie. Participants were instructed not to worry about grammar and wording -

simply ‘‘write what came to their mind.’’ The free recall test allowed us to investigate the relationship be-

tween the individual difference in event segmentation and subsequent memory performance.

Part 2: We collectedmore data online. Participants remotely ran the study on their personal computers. The

study was written in javascript using jsPsych (de Leeuw, 2015). It included the association learning task, the

encoding of the linear and non-linear movies, the recognition of temporal order of the movies, followed by

the event segmentation task and free recall.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Association learning

We analyzed the association learning task in two ways, without modeling and with reinforcement learning

and workingmemory (RLWM) modeling, consistent with previously published studies (Collins, 2018; Collins

et al., 2014, 2017; Collins and Frank, 2018). Trials with missed responses or with less than 200 ms response

time were discarded. To generate learning curves, we analyzed the proportion of correct choices as a func-

tion of the number of iterations (howmany times the stimulus was encountered) and set size. Next, we used

a multinomial logistic regression to evaluate the performance with respect to three parameters - the set

size (number of stimuli in a block), delay (number of trials since the last correct choice for the current stim-

ulus), and previously correct answers (number of correct choices made so far for the current stimulus) - and

their interactions. We quantified the effect of working memory and learning on a trial-by-trial basis by

modeling the probability of a correct choice for each participant as a function of the three parameters:

set size, the number of previously correct answers, and delay (see Collins et al. (2017) for details).

Movie segmentation

We evaluated the keypresses during the movies and discarded any keypress that occurred less than 100 ms

from the previous keypress to remove multi-clicks. Then we quantified the number of events by counting

key presses for each movie. A ranked (Spearman) correlation was utilized to identify the consistency of in-

dividual differences across the movies.

Modeling

We fit three models to the trial-by-trial responses for each subject: two-parameters reinforcement learning

(RL2), four-parameters reinforcement learning (RL4), and a modified RLWMmodel (Collins et al., 2017). We

used the Akaike Information Criterion (AIC) to select the best model considering the number of parameters

used in eachmodel. RLWMwas used as a baseline. Amodel’s relative AIC was quantified by subtracting the

model’s AIC by RLWM’s AIC and dividing the answer by RLWM’s AIC. We also simulated data based on the

models for validation.

Two-parameters reinforcement learning (RL2)

The basic model was a reinforcement learning model (without the working memory component) with a

delta rule learning. For each stimulus, s, and action, a, the expected reward was Qðs;aÞ, and the Q value

was updated with observing feedback, rt , through time. The Q values were updated based on a learning

rate, a, and the difference between expected and observed reward at trial t (known as the prediction error:

dt = rt �Qtðs;aÞ):Qt + 1ðs;aÞ = Qtðs;aÞ+ a 3 dt . Choosing an action utilized the expected reward value. An

action was probabilistically chosen, with a greater likelihood of selecting an action that had a higher Q

value, using the SoftMax choice rule: PðajsÞ = ebQðs;aÞ=
P
i

ðebQðs;aiÞÞ, where b is an inverse temperature

free parameter. This model had two parameters of a and b.

Four-parameters reinforcement learning (RL4)

This model in addition to RL2 includes a value for unrewarded correct responses and undirected noise in

action selection. In this experiment, a correct response was sometimes rewarded and sometimes not re-

warded. We estimated how much a person valued a correct response, irrespective of the reward by esti-

mating the value for correct-but-not-rewarded items, i.e., r0. The model also considered an undirected

noise, 0<ε<1, in the stochastic action selection, to allow for choosing an action that did not have the highest

Q value. Accordingly, P)ð1 � εÞ3 P + ε3 1
na
, where 1=na is a uniform probability of choosing an action.

Reinforcement learning and working memory (RLWM)

We applied RLWM to estimate the workingmemory capacity and forgetting rate of the participants (Collins

et al., 2017). This model had 8 parameters and consisted of two components. A working memory compo-

nent with limited working memory capacity, C, and forgetting rate,BWM. The Q value was subject to decay

with a forgetting rate, 0<4<1, so for all the stimuli that are not current,Q)Q +4ðQ0 �QÞ, whereQ0 = 1
ns
.

The RL component had a learning rate, a, value for an unrewarded correct response, r0, undirected noise, ε,

and a forgetting rate,BRL (b was set constant at 100). We also allowed for the potential lack of an impact of

negative feedback (d<0) by estimating a preservation parameter, pers. In that case, the learning rate is

reduced by a)ð1 � persÞ3 a. Accordingly, pers near 1 indicated lack of an impact of negative feedback
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(learning rate close to 0; high preservation of Q value), and pers close to 0 indicated equal learning rate for

positive and negative feedback.

The WM component was simulated as encoding of stimulus in a Q learning system, like the RL component

but the outcome, rt , was 1 for correct, 0 for incorrect (rather than the observed reward), the learning rate was

set to 1 (a = 1Þ, and at most C stimuli could be remembered. We formulated the probability of a stimulus

being in working memory as:

If rt = 1;PWMðrt jst ; atÞ=min

�
1;

C

ns

�
3Qwmðst ; atÞ+

�
1�min

�
1;

C

ns

��
3 1

�
na;�

C
� � �

C
�� �
If rt = 0;PWMðrt jst ; atÞ=min 1;
ns

3 ð1�Qwmðst ; atÞÞ+ 1�min 1;
ns

3 1 na

where na = 3 is the number of possible actions. In the RL case,

if rt>0, PRLðrt jst ;atÞ = QRLðst ; atÞ

if rt = 0, PRLðrt jst ;atÞ = 1� QRLðst ; atÞ.

A mixture weight, w0, formulated how much each of the components was used for action selection. The

weight was w03min
�
1; Cns

�
to represent the confidence in WM efficiency. This initialization reflects that a

participant is more likely to utilize WM when the stimulus set size is low. The overall policy was:

PðajsÞ = wtðsÞ3PWMðajsÞ+ ð1�wtðsÞÞ3PRLðajsÞ
A Bayesian model averaging scheme inferred the relative reliability of WM compared with the RL system

over time, t:

wt + 1ðsÞ = PWMðrt jst ; atÞ wtðsÞ
PWMðrt jst ; atÞ wtðsÞ+ PRLðrt jst ; atÞ ð1� wtðsÞÞ

, where PWM is the probability that action a is selected for stimulus s according to the WM component at

time t and PRL is the probability of action selection according to the RL component. We assumed that

although the w0 is the same for all stimuli, the development of mixture weight over time would be different

for each stimulus because the probability of retaining a stimulus in working memory or another retention

system is not equal.

Cross-task comparison

We determined a relationship between the number of events and working memory capacity and forgetting

rate that were estimated by the RLWM model using a mixed-effect linear and quadratic model fitting,

including the dataset (part 1 or part 2) as a random factor which allows the intercept to be different across

the datasets (formulated as y � x^2 + (1|set), where x is the total number of determined events and y is the

WM forgetting rate). We also studied a link between event segmentation and the subsequent memory per-

formance (recall and temporal order memory). We accessed recall by applying natural language processing

algorithms to count the number of ‘‘realis’’ events (i.e., factual and non-hypothetical words) and the total

number of written words in the free recall task (Sap et al., 2020; Sims et al., 2019).

Learning and working memory results without RLWM

The results of association learning without reinforcement learning modeling also showed a link between

working memory limitation and event segmentation. Overall, participants learned the stimulus-action

associations. For all set sizes, the accuracy of the last two iterations was on average more than 90% (M =

93.5%, SD = 3%; Figure S1); however, the accuracy decreased with increasing set size (r = �0.94, p =

0.018). We analyzed the trial-by-trial performance with respect both to set size and to the maintenance

of correct associations across intervening trials of a stimulus. The result of a multinomial logistic regression

revealed that performance was reduced with increasing set size (t = �10.12, p < 0.001) and delay (the num-

ber of trials since a correct response to the current stimulus (t =�8, p < 0.001). By contrast, the performance

improved with increasing total number of previously correct responses to the current stimulus (t = 5.95, p <

0.001). The interactions between set size and delay (t = �8.29, p < 0.001), set size and previous correct re-

sponses (t = 4.19, p < 0.001), and delay and previous correct responses (t = 5.18, p < 0.001) also affected the

performance (Figure S1B), consistent with the previous report (Collins et al., 2017).
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MOVIES STORIES

Non-linear storyline

The animation is a sequence of independent events that involve crocodiles. It starts by showing two zebras

listening to music next to a swamp. A crocodile suddenly eats one of them. Then, the crocodiles swim in a

swamp just below the surface with only the eye visible. One of the crocodiles is wearing glasses. This croc-

odile stands up for a moment to clean its glasses and then it continues swimming below the surface. Next, a

crocodile attacks a cow that is drinking water. The cow is too big for the crocodile so it cannot bite it. The

cow, however, beats the crocodile in one attempt. Next, a crocodile is eating at a table in the swamp that

has birds next to it. It puts catchup on the birds and eats them one by one with a fork. A bigger crocodile

takes a cow into the swamp, but the cow defeats the crocodile and comes out. Next, a goat is swimming

away from a crocodile, clearly scared. The swamp suddenly dries out. The crocodile cannot walk fast, but

the goat happily leaves the swamp. Then, a crocodile attacks a cow that is by the swamp, but the cow skins

the crocodile and takes it for tanning. Next, a crocodile with dental braces is shown drinking with a straw. A

baby zebra plays by the swamp and bothers the crocodile. After that, a crocodile is shown participating in a

non-violence resistance group with other animals, holding a peace sign. The movie ends with a scene of a

very long crocodile on which a bird is happily picnicking.
Linear storyline

The movie depicts a linear life story of a pig. It starts by showing a caterpillar on a leaf. Then a big sow ap-

pears and gives birth to seven piglets. The piglets follow the sow in a line going around woods and crossing

roads. Two of the pigs suddenly disappear; they were killed on the road. The rest of the piglets also disap-

pear one by one, except for one. Then the caterpillar is making a cocoon – showing the passage of time.

The piglet grows up to be an ugly boar, and the sow is old. The sow dies. The pig meets three gilts. They

reject him (depicted as a computer error message box) because he does not have money, he is ugly, and

one of the gilts is already married. The cocoon is now complete, and the boar is still sad and alone. He

bumps into a lion that was hunting for zebras. The lion gets happy for the catch, but the boar is too smelly.

The lion puts the boar in a washing machine. He comes out as a red boar which is not desirable to the lion.

The lion dumps the boar. The boar passes by the gilts again. This time, the one that was interested in a

good-looking boar is interested and follows him.
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