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Learning-to-learn, a progressive speedup of learning while solving a series
of similar problems, represents a core process of knowledge acquisition

that draws attention in both neuroscience and artificial intelligence. To
investigate its underlying brain mechanism, we trained arecurrent neural
network model on arbitrary sensorimotor mappings known to depend
onthe prefrontal cortex. The network displayed an exponential time

course of accelerated learning. The neural substrate of aschema emerges
within alow-dimensional subspace of population activity; its reuse in new
problems facilitates learning by limiting connection weight changes. Our
work highlights the weight-driven modifications of the vector field, which
determines the population trajectory of arecurrent network and behavior.

Such plasticity is especially important for preserving and reusing the
learned schema in spite of undesirable changes of the vector field due to
the transition to learning a new problem; the accumulated changes across
problems account for the learning-to-learn dynamics.

In psychology,a‘schema’is an abstract mental representation deployed
tointerpret and respond to new experiences and to recall these expe-
riences later from memory'?. Mental schemas are thought to express
knowledge garnered from past experiences**. For example, expert
physicists apply relevant schemas when they categorize mechanics
problems based on governing physical principles (for example, con-
servation of energy or Newton’s second law); by contrast, novice physi-
cists who lack these schemas resort to categories based on concrete
problem cues (for example, objects in the problem or their physical
configuration)’. What is the brain mechanism of schemas, and what
makes it essential for rapid learning and abstraction?
Onetypeofschemais called a‘learning set’. Inapioneering experi-
ment, H. F. Harlow trained macaque monkeys on a series of stimulus—
reward association problems®. While keeping the task structure fixed,
each problem consisted of two novel stimuli that had to be correctly
mapped onto rewarded versus non-rewarded, respectively. Harlow

found that the monkeys progressively improved their learning effi-
ciency over the course of a few hundred problems, until they learned
new problemsin one shot. He concluded that, rather thanlearningeach
problem independently of the earlier ones, the monkeys formed an
abstract learning set that they deployed to learn new problems more
efficiently—they were ‘learning-to-learn’.

Schemas are posited to emerge as an abstraction of the com-
monalities across previous experiences*’, whose generalization to
novel situations accelerates learning®'. Indeed, the abstract neural
representation of shared task variables has been observed across
consecutively learned problems when experience on earlier problems
facilitates later learning'-2. Furthermore, the progressive improvement
in learning efficiency observed by Harlow suggests that this process
of abstract representation-facilitated learning undergoes progres-
sive refinement. The structure learning hypothesis” equates learning
to a change in the brain’s internal parameters that control behavior
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and posits that the progressive improvement in learning efficiency
emerges with a low-dimensional task-appropriate realization of the
internal parameter space. Parameter exploration within such a space
is less demanding, which makes learning more efficient. Therefore,
whereas schema formation emphasizes an abstraction of the task’s
structure, structure learning emphasizes learning how to efficiently use
aschematoaidingeneralization. Conceptual theory notwithstanding,
how, mechanistically, a neural circuit realizes a schema and applies it
to expedite learning remains to be elucidated.

In spite of tremendous progress in machine intelligence,
learning-to-learn presents amajor challenge in presently available arti-
ficial systems. Machine learning studies have proposed ‘meta-learning’
approaches whereinmodel parameters that promote rapid generaliza-
tion to new problems are explicitly favored and sought'***. However, it
is not known whether such mechanisms are necessary computation-
ally or present in the brain. Can learning-to-learn arise solely from
the natural dynamics of learning? We explored this question of broad
interest to brainresearch, cognitive science and artificial intelligence
by examining the neural mechanisms of learning-to-learninrecurrent
neural networks (RNNs). We chose learning of arbitrary sensorimotor
associations, which is essential for flexible behavior'®, as our behavio-
ral paradigm. Here, arbitrary mappings between sensory stimuli and
motor consequents must be learned on each problem'”, Macaque
monkeys exhibit learning-to-learn on association problems; they learn
new problems within anaverage of 20 trials when they are well trained"”.
Furthermore, their prefrontal cortexis causally engaged during rapid
problem learning. Prefrontal neurons represent task stimuli and
responses during visuomotor association trials'”’. Prefrontal lesions
produce substantial visuomotor association learning deficits'****, We
sought to understand whether and how a sensorimotor association
schema may be encoded by these prefrontal representations, how
itis applied to new problems and how its usage is refined to improve
learning efficiency.

We found that RNNs trained on a series of sensorimotor associa-
tion problems exhibit robust learning-to-learn despite the absence of
meta-learning: the number of trials to learn a problem decays expo-
nentially with the number of previously learned problems without an
explicitmechanismto accelerate learning withincreasing experience.
We analyzed the population activity of the RNN’s units via subspace
decomposition to uncover population-level latent variable represen-
tations**?*, and we used manifold perturbations to study the causal
relationship between learning efficiency and the reuse of existing popu-
lation representations to learn®. The analyses revealed that the model
develops neural correlates of the task’s schema—a low-dimensional
neural manifold that represents shared task variables in an abstract
formacross problems. Itsreuse avoids the formation of representations
denovowhilelearning problems, which accelerateslearning by limiting
the connection weight changes required. We introduce anovel measure
relating these weight modifications to population activity changes,
which we term the ‘weight-driven vector field change’. This measure
showed that the reused representations are not entirely invariant
across problems. Instead, mapping new stimuli can modify the reused
representations in undesirable ways. Connection weight changes are
primarily recruited to prevent such modifications. Moreover, the
weight changes in early problemsimprove theinvariance of the reused
representations, limiting the degree to which they would be modified
in the future, which further accelerates learning. The accumulation
of such improvements over a series of problems supports structure
learning and promotes learning-to-learn.

Results

Learning-to-learnin trained neural networks without
meta-learning

We evaluated whether an RNN model could demonstrate
learning-to-learn on delayed sensorimotor association problems. In

eachproblem, the modellearned a unique mapping between a pair of
sensory stimuli (for example, images) and a pair of motor responses
(Fig. 1a). Each trial began with a 0.5-second sample epoch, when a
sensory stimulus was presented together with a fixation cue, and the
model was required to maintain fixation. A 1-second delay epoch fol-
lowed, when the model had to continue fixation in the absence of the
sample stimulus. The trial concluded with a 0.5-second choice epoch
signalled by removal of the fixation cue, when the model had to report
its choice of the appropriate motor response. The two sample stimuli
ineach problem wererandomly generated. The model was composed
ofapopulation of recurrently (or laterally) connected firing rate units
that received 11 inputs, one signaling fixation and ten signaling fea-
tures of a sample stimulus (Fig. 1b). Such stimulus representations
are consistent with the finding that visual objects are represented in
the monkey inferotemporal cortex by a feature-based topographic
map®. The modelis also consistent with lesion studies demonstrating
the causal involvement of inferotemporal-prefrontal connections in
visuomotor learning and retention®>?*, Response choices were read out
from the population’s activity by three output units that represented
fixation, motor response 1 or motor response 2.

The modelwas trained onaproblem onetrial atatime. Its param-
eters were adjusted at the end of each trial to minimize the errorsin
its output responses, until the output responses achieved criterion
accuracy (Methods). The model was thentransitioned to anew problem
(Fig. 1c). Crucially, training was performed without an explicit
meta-learning objective. A network trained on a series of these prob-
lems demonstrated learning-to-learn (Fig. 1d). The network required
a few thousand trials to learn the first problem, which was expected
because it was initialized with random connection weights. By con-
trast, solving the second problem took a few hundred trials. Thereaf-
ter, the trials to criterion progressively decreased over the next few
hundred problems, plateauing at an average of 20 trials per problem.
This decrease was well fit by a decaying exponential function, which
closely matched a 30-problem moving average of the network’s trials
tocriterion. This performance iscommensurate with learning-to-learn
in macaque monkeys, which exhibit an exponential decrease in their
trials to criterion when trained on a series of association problems
(Peysakhovich et al., unpublished), and demonstrate learning within
15-20 trials when well trained”. The fit’'s parameters quantify the net-
work’s learning-to-learn performance: the time constant measures
how quickly it produceslearning-to-learn, and the learning efficiency
asymptote measuresitstrials to criterion plateau. Although naive mon-
keys undergo behavioral shaping on the desired response set before
they are introduced to the task, a naive network’s learning efficiency
onthefirst problemreflects learning both to generate basic responses
and the specifics of the problem. To avoid this confound related to
learning the response set, we quantified the network’s learning-to-learn
performance starting with the second problem.

We tested the robustness of these results by similarly training
30 independently initialized networks. Across these networks, the
learning-to-learn time constants and asymptotes were limited to a nar-
rowrange (Fig. 1e; time constant: 47.52 + 26.22 (mean + s.d.); asymptote:
21.33 +3.85). Wealso found that the model’s learning speed onaproblem
depends on the perceptual similarity between its sample stimulus pair
andthat ofthe previously learned problem (Fig. If), with higher similarity
producing faster learning. We further tested the model over a range of
hyperparameter settings (f-Itransfer functions, learning rates, weight and
firing rate regularization levels) and observed robust learning-to-learn
across all conditions (Supplementary Fig. 1). In addition, we found that
the modelwas faster at re-learning problems after subsequently learning
several new problems (Supplementary Fig. 2), suggesting that it retains
amemory of previously learned problems. Taken together, these results
demonstrate that networks trained on a series of delayed sensorimotor
association problems robustly exhibit learning-to-learn, despite the
absence of an explicit meta-learning objective.
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Fig.1|RNNs trained on delayed sensorimotor association problems exhibit
learning-to-learn. a, Structure of an example delayed sensorimotor association
problem. The model must learn to associate two sensory stimuli (for example,
images) with corresponding motor responses (for example, asaccade). Target
are colored to emphasize the distinction between response choices, not to
indicate that the response targets are colored. b, RNN model is composed of
recurrently connected rate units that receive a fixation signal and features

ofthe sample sensory stimulus asinputs. It reportsits response choices via
output units corresponding to fixation, motor response choice 1 (brown) or
motor response choice 2 (teal). ¢, The model is trained on a series of sensorimotor
association problems, each with arandomly chosen sample stimulus pair. It

is transitioned to a new problem upon reaching criterion performance on the
current problem. d, A network’s learning efficiency, measured as the number of
trials to criterion performance, over 1,000 consecutively learned problems.

Box plots summarize the learning efficiency in groups of 50 consecutive
problems (center line: median; box bottom/top edge: 25th/75th percentiles;
whiskers: minimum/maximum within 1.5x the interquartile range from box
edge; +: outliers). The number of trials to criterion on a problem decreases with
the number of previously learned problems. This is characterized by a decaying
exponential function that demonstrates the model’s ability to produce learning-
to-learn. e, Thirty RNNs with different initial conditions exhibit learning-to-learn,
asindicated by their learning-to-learn time constants (top) and asymptotes
(bottom).f, Learning efficiency on the third problem as a function of the cosine
similarity of its sample sensory stimulus pair to the previously learned problem
(problem 2). Trials to criterion are averaged over 50 independently chosen
stimulus pairs for each similarity value and presented as the mean and standard
error (error bars) of this average across ten networks with different initial
conditions. Time const., time constants.

Abstracted neural manifold governs the task’s schema
Theactivity of apopulation of Nrecurrently connected units co-evolves
duringatrial, forming a trajectory in N-dimensional population state
space (Fig.2a, top). Whenaproblemislearned, the network responds
to each sample stimulus withatrajectory that appropriately subserves
stimulusintegration, decision-making, working memory maintenance
and fixation/response choice. We demixed” (Methods) trajecto-
ries from consecutively learned problems to identify shared neural
representations that support these computations. This procedure
decomposedthetrajectoriesinto components embedded within two
non-overlapping subspaces of the state space (Fig. 2a, middle). Decision
representations embedded within the ‘decision subspace’ revealed
similarities between trajectories that shared their response choice;
stimulus representations embedded within the ‘stimulus subspace’
variedina problem-dependent and asample stimulus-dependent man-
ner. We further decomposed the two decisionrepresentationsineach
problem into a mean decision representation, with the mean taken
over both decision representations (Fig. 2a, bottom left) and residual
decisionrepresentations given by subtracting out this mean fromeach
decision representation (Fig. 2a, bottom right).

Decomposing the trajectories from the first 50 consecutively
learned problems in this manner revealed a low-dimensional shared
decision subspace (2.36 + 0.18 dimensions across ten networks),

whose constituent decision representations explained most of the
variance in population activity across problems (88.54% + 3.16%
across ten networks). Furthermore, the mean decision representa-
tionslay closeto each otherin state space, forming a shared manifold
across problems (Fig. 2b, left). The residual decision representations
consistently encoded the decision and choice of either response
across problems, thus forming a shared manifold for each decision
(Fig. 2b, center). The persistence of a low-dimensional shared
manifold, which explains most of the population’s variance across
problems, demonstrates astrong abstraction of the shared task vari-
ables that it encodes. The model retains and reuses this manifold
across problems, despite changes in the stimulus set and the weight
change-induced change in network dynamics that transpires while
learning. Moreover, population activity changes during learning
are largely determined by changes in these shared representations
(Supplementary Fig. 3). In contrast, the stimulus representations
(Fig. 2b, right) were higher dimensional (7.98 + 1.48 dimensions across
ten networks) but explained asmall proportion of the population vari-
ance. Interestingly, the distribution of neural activity in state space
at the beginning and end of problem learning closely resemble each
other (Supplementary Fig. 4). These results demonstrate that the
model evenreuses pre-established representations when responding
to novel sample stimuli and learning their mappings.
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Fig.2|Neural representations of decision and choice are shared across
problems. a, Schematic of the demixing procedure that identifies shared
versus problem-dependent components of the neural representations.
Population trajectories for the two mappings in 50 consecutively learned
problems (illustrated for two problems, for clarity) are decomposed into
components within a decision subspace, which are shared across problems
by trajectories that correspond to the same response choice, and problem-
dependent components embedded in a stimulus subspace. The shared
decision representations are further decomposed into their mean and residual
components for each problem. b, Decomposed representations for problems
1-50, presented along the first three principal components of their respective

subspaces. ¢, Schematicillustrating that the component representations
collectively drive the response choice outputs. d, The net current from the
mean (left) and residual (center) decision representations and the stimulus
representations (right) to response 1 (brown) and response 2 (teal) outputs in
mapping1(top) and mapping 2 (bottom) trials. The mean decision components
inhibit motor responses during the sample and delay epochs, and the residual
decision components drive the correct response while inhibiting the incorrect
one. Dashed vertical lines indicate the end of the sample and delay epochs. Plots
show mean of the net currents across the 50 problems, and error bars indicate
their standard errors. PC, principal component; resid, residual; stim, stimulus;
dec, decision.

Next, we examined the relative contribution of these components
tothe output responses by measuringthe net current fromeach com-
ponent to the choice outputs (Fig. 2c). During trials where response
1was chosen (mapping 1 trials), residual decision representations
excited the responseloutput unitandinhibited the response 2 output
unit, particularly within the choice epoch (Fig. 2d, center). During map-
ping2trials, these representations had the opposite effect. In contrast,
the mean decision representations inhibited both response choices
throughout the sample and delay epochs but not the choice epoch
(Fig. 2d, left). This prevented premature choice initiation during the
delay epoch (Fig. 2d, center). The contribution of stimulus representa-
tions to response selection was negligible throughout the trial (Fig. 2d,
right). Quantitatively similar results were obtained for all consecutively
learned 50-problem groups in all the networks that we tested. These
results demonstrate that the decision manifold constitutes the neural
correlates of the task’s schema—it represents the shared temporal
(mean decision) and two-alternative (residual decision) structure of
thetaskinanabstractformand, thereby, reflects knowledge abstracted
from past experiences.

Schema manifold scaffolds representations that facilitate
learning

We have shown that the schematic decision manifold is reused by, or
‘scaffolds™?®°, the learned representations in subsequent problems.
Thisreuse isaccompanied by astarkimprovementin learning efficiency

between the first problem and subsequent ones (Fig. 1d). To establish
whether reuse of the decision manifold causally improves learning
efficiency, we compared the learning in networks that were barred
from reusing it to control output responses in new problems, with
networks that were allowed to do so. This method has been applied
in brain-computer interface (BCI) studies to establish a causal link
between monkeys’ ability to rapidly adapt to BClreadout perturbations
and their reuse of existing motor cortical representations to modulate
the perturbed readouts?.

Inour model, thisinterventionrelies on the concept of a ‘readout
subspace’. Population activity modulates an output unit’s response,
only when the sum of the excitatory and inhibitory post-synaptic cur-
rents it produces at the unit is non-zero (output-potent activity).
Therefore, the output connection weights, which mediate these cur-
rents, define a readout subspace of population state space that con-
strainsthe set of population activity levels which can modulate output
responses. Our observation that population representations within the
decision subspace predominantly modulate output responsesimplies
that the decisionand readout subspaces strongly overlap. Eliminating
this overlap should impair the effectiveness of the pre-existing deci-
sion manifold in scaffolding newly learned trajectories and force the
development of new decision representations to modulate the output
responses. The observation of aconcurrentlearning deficit would caus-
ally link the representational scaffold to accelerated learning. For this
causal intervention and its controls, we first trained a naive network
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Fig. 3| Manifold perturbations reveal that reusing the schematic decision
manifold facilitates learning. a, Output responses are readout from a subspace
of population state space spanned by the network’s output weights. Its overlap
with the decision subspace enables the control of output responses by the
decision representations. b, Manifold perturbations to assess the role of decision
manifold reuseinlearning. A network is trained onits first problem to establish
the decision and readout subspaces (top left). It is trained on asecond problem (i)
whileits output weights are frozen (frozen readout, top right) (ii) after perturbing
and freezing its output weights such that the readout and decision subspace
overlap is eliminated (D->S manifold perturbation, bottom right) or (iii) after
perturbing and freezing its output weights such that the readout and stimulus
subspace overlap is altered (S>S manifold perturbation, bottom left). ¢, Average
second problem learning efficiency in each of the three conditions, compared

to the first problem learning efficiency. d, Prior knowledge transfer froma two-

mapping to athree-mapping problem facilitates learning. Plot compares learning
efficiency on afirst problem comprising two or three mappings with the average
learning efficiency onasecond problem. The latter is a three-mapping problem
and is preceded by either a two-mapping (2-3 mappings) or a three-mapping
(3->3 mappings) problem. e, Learned representations for the second problem
(2»3 mapping condition) in the first three principal components of the decision
subspace (light) and the decision representations for the first problem projected
into the same subspace (dark). Second problem decision representations are
shown for 50 independently chosen stimulus sets. Trials to criterion on the second
problemis averaged over 50 independently chosen random perturbations (c) /
stimulus sets (d) and presented as the distribution of these averages across ten
networks with different initial conditions. Box plots within violins ind summarize
these results (center circle: median; box bottom/top edge: 25th/75th percentiles).
PC, principal component; Manif. pert., manifold perturbations.

onasingle problemtoletit develop overlapping readout and decision
subspaces (Fig. 3a).

In the frozen readout condition, we then trained the network
onits second problem while freezing (or preventing changes to) the
output weights (Fig. 3b, top right). Such networks exhibited a substan-
tialimprovement in learning efficiency from the first problem to the
second (Fig.3c). Thus, freezing the output weights does not adversely
affect learning. In the stimulus-to-stimulus (S->S) manifold perturba-
tion condition, we perturbed the output weights to alter the overlap
between the readout and stimulus subspaces but not between the

readout and decision subspaces (Fig. 3b, bottom left, and Methods).
Then, wetrained the network onits second problem with frozen output
weights to prevent re-alignment of the readout and stimulus subspaces
during training. Again, we found asubstantial speedupinlearning from
the first problemto the second (Fig. 3c).

Finally, in the decision-to-stimulus (D~S) manifold perturbation
condition, we perturbed the output weights to eliminate all overlap
between the readout and decision subspaces (Fig. 3b, bottom right).
Wethentrained the network onits second problem with frozen output
weights. This compels the formation of new decision representations
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within the original stimulus subspace. In contrast to the frozen read-
outs and S~>S manifold perturbation conditions, such networks were
strongly impaired at learning—they learned as slowly as naive networks
learning their first problem (Fig. 3c). Collectively, these results dem-
onstrate that impeding the reuse of the decision manifold adversely
affects learning performance.

Wealso tested whether the transfer of prior knowledge facilitates
learning of problems with altered but overlapping task structure.
To do so, we trained a naive network on a single problem comprising
two mappings, asin Fig. 3a. Next, we trained iton aproblem comprising
three mappings (thatis, three sensory stimuli mapped to three motor
responses). Here, too, we observed a substantial facilitation of learn-
ing performance compared to anaive network (Fig. 3d), accompanied
by the reuse of the decision manifold from the two-mapping problem
to learn the three-mapping problem (Fig. 3e). Taken together, these
results confirmthat the schematic decision manifold formsarepresen-
tational scaffold that facilitates the transfer of prior knowledge regard-
ingthetask’s structure to new problems and, thus, expedites learning.

Distinct roles of representation reuse and plasticity inlearning
We have shown that representational reuse improves learning effi-
ciency. However, learning produces large population activity changes
tomediate the necessary output response corrections (Supplementary
Fig.7b). How does the emergence of these large changes benefit from
the reuse? And how do its contributions compare to those of the
plasticity-induced connection weight changes? To answer these ques-
tions, we analyzed the activity changes between the beginningand end
ofaproblem. The population responds to anovel sample stimulus with
a‘pre-learning’ trajectory instate space (Fig.4a, right, blue curve). This
trajectory evolves through time via temporal integration ofinput and
population activity mediated by input and recurrent connection
weights, respectively (Eq. (2)). The resulting advance in population
activity from r;_; to r; (Fig. 4a, left) during the brief time interval from
t-1totisrepresented in state space by a vector originating at r; |
(Fig.4a, right). The direction and magnitude of advance is state depend-
ent—it depends ontheactivity levels of the population’s units (that s,
the population state) at time ¢ — 1. The temporal sequence of these
vectors guides the evolution of population activity between theinitial
(ry)and final (r;) states (Fig. 4a, right, blue arrows along blue curve).
These state-dependent vectors constitute a ‘vector field**** that spans
the entire state space and describes the network’s dynamics (Fig. 4a,
right, blue arrows tiling the space).

After a problem is learned, the population activity traverses a
‘learned’ trajectory (Fig. 4b, right, purple curve) comprising learned
population states. Because the connection weights after learning are
a sum of the pre-learning weights and plasticity-induced weight
changes, the learned trajectory is governed by the sum of the
pre-learning vector field and the change in this field due to the weight
changes. Consequently, so is the change in population activity.
The change in population activity from a pre-learning state (r';)to a
learned state (r,) at time ¢, z,, is represented in state space by a vector
from the former to the latter (Fig. 4c, solid gray arrows). It emerges
from an accumulation of activity change increments throughout the
trial (Fig. 4c, green arrow). The incremental change in population
activity (4z,,;) between tand ¢ + 1derives from the pre-learning vector
field (that is, the reuse of existing representations) and the
plasticity-induced change in the vector field.

Setting aside the effect of weight changes for amoment, consider
the network’s pre-learning vector field at the learned and pre-learning
states. Due to its state dependence, the vector field may advance
population activity differently from one state versus from the other.
In this event, the activity difference between the pre-learning and
learned states will change between times ¢ (z,) and ¢ + 1 (z.,,). In state
space, the vector difference (Fig. 4d, left, pink arrow) between the
pre-learning vector field at the two states (blue arrows) characterizes

this change and is referred to as the ‘state-driven vector field change’
(or state-driven VFC, referred to in the Methods as AField, .,- Eq. (6)).
The state-driven VFC depends solely on the pre-learning vector field
(thatis, onreused representations).

The connection weight changes alter the net post-synaptic cur-
rents into the population. This alters how its activity advances over
time (Fig. 4b, left). In state space, this translates to a VFC all along the
learned trajectory (Fig. 4b, right, orange arrows), including at time ¢
(Fig. 4d, center), and it is referred to as the ‘weight-driven vector field
change’ (or weight-driven VFC, referred toin the Methods as AField,, (.-
Eq. (7)). The sum of these two types of VFC (weight-driven and
state-driven VFCs) produces the incremental change in population
activity (4z,,,) between tand ¢ + 1 (Fig. 4d, right, and Egs. (4 and 5)).

Measurements revealed a substantial difference between the
magnitudes of activity changes (z.; Supplementary Fig. 7b) and activity
change increments (4z,; Fig. 5b)—large activity changes emerge from
an accumulation of relatively small change increments generated
throughout the trial. We further assessed the relative contribution of
the weight-driven and state-driven VFCs to the activity change incre-
ments by decomposing them (Fig. 5a and Methods) into their compo-
nents in the direction of the activity change increments (4z, - parallel
component) and orthogonal to them (4z, - orthogonal component).

The state-driven VFC’s parallel componentis much larger in mag-
nitude than the weight-driven VFC’s parallel component (Fig. 5b, green
bars). Therefore, the network’s pre-learning vector field, which gov-
erns the state-driven VFC, is primarily responsible for the population
activity changes. Furthermore, these parallel components are low
dimensional not only in individual problems but also across a group
of problems (Fig. 5¢). This is consistent with the structure learning
hypothesis®, wherein efficient learning relies on changing behavior
via changes within a low-dimensional internal parameter space of
the brain. Our results suggest that this parameter space corresponds
to a low-dimensional subspace of neural population activity, which
constrains how population activity and behavior change while learn-
ingaproblem.

The weight-driven VFC’s orthogonal componentis much largerin
magnitude thanits parallel component. Furthermore, itis equalinmag-
nitude but opposite in direction to its state-driven counterpart and,
therefore, nullifiesit (Fig. 5b, pink bars). These orthogonal components
arealsolow dimensional onindividual problems but high dimensional
acrossagroup of problems (Fig. 5¢c). Moreover, they largely span direc-
tions along which the existing representations do not typically co-vary
(Supplementary Fig. 8a). These results imply that novel sample stimuli
interact with the existing representations when mapped onto them, ina
manner that elicits uncharacteristic population responses. That is, the
existing representations can be sensitive (thatis, not entirely invariant)
to the sample stimuli that are mapped onto them. The weight-driven
VFC emerges primarily to impede such interactions and, thereby,
prevent changes to the existing representations.

To summarize, our analysis of the population activity changes
between the start and end of problem learning revealed that (1) large
changes emerge over the trial time course from the accumulation of
asequence of small local changes along the learned trajectory; (2)
these changes are low dimensional and stem primarily from reusing
the network’s pre-learning vector field to shape the learned trajectory,
thus elucidating the relative contribution of representational reuse
to learning; and (3) the pre-existing representations are not entirely
invariant to having novel sample stimuli mapped onto them and can
undergo uncharacteristic modifications in the process. Connection
weight changes emerge largely to prevent such modifications.

Recurrent weight change magnitude determines learning
efficiency

Next, we examined why learning efficiency is enhanced by repre-
sentational reuse, by exploring how learning efficiency is impacted
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Fig.4 |Learned trajectories emerge from VFCs. a,b, The temporal evolution of
population activity at the start (pre-learning, a) and end (learned, b) of a
problem, illustrated in population state space on the right. a, The activity
advances due to the integration of net post-synaptic currents, which depend on
the activity levels (or state) of the network and input units and their efferent
connection weights (left). This population-state-dependent advance determines
avector field that tiles state space (right, blue arrows) and guides the evolution of
the population trajectory (right, blue curve). b, Plasticity-induced connection
weight changes (AW) alter the post-synaptic currents (ACurrent), thereby altering
the advance in population activity (left). The effect of this weight-driven VFCis a
continual series of modifications to the vector field (right, orange arrows) that

VFC(t+1)

determines the evolution of the learned population trajectory (right, purple
curve).c, Thedivergence of the learned trajectory from the pre-learning
trajectory (z,., right, solid gray arrow) emerges from an accumulation of activity
change increments throughout the trial (4z,,,, right, green arrow).d, Each
increment is the sum of the state-driven and weight-driven VFCs (left and center,
pink and orange arrows, respectively). The state-driven VFCis a result of
state-dependent differences in the pre-learning vector field, specifically between
learned and pre-learning population states (left, blue arrows atr,and r,
respectively). Dashed gray arrows in c and d represent a displaced version of the
vector z,,;to helpillustrate vector differences. Pop., population; Post-syn.,
post-synaptic.

by the connection weight changes. In Supplementary Note 1.1.1and
Supplementary Fig. 5, we show that the model learns via recurrent
rather thaninput weight changes. Athough recurrent and input weight
changesindependently contribute to the weight-driven VFC (Eq. (7)),
inthe model the weight-driven VFCis determined by recurrent weight

changes, asthis is more efficient. Moreover, the magnitude of recurrent
weight changesin aproblem explains the number of trials expendedin
learning it (Fig. 6a). This is consistent with analytical bounds relating
the magnitude of connection weight changes and sample efficiency
in deep neural networks***,
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Inlight of this observation and the exponential decreasein the tri-
alstocriterion across problems, we hypothesized that the magnitude
ofrecurrent weight changes should also decrease exponentially across
problems. We further posited that the magnitudes of the post-synaptic
current changes and the weight-driven VFC should also decrease expo-
nentially, because these quantities are directly related to therecurrent
weight change magnitude. Figure 6b confirms that the magnitude of
these three quantities decreases exponentially as a function of the
number of learned problems. Therefore, the progressiveimprovement
inthe model’s learning efficiency is explained by a similar decrease in
the magnitudes of the recurrent weight changes and weight-driven
VFCrequired tolearn problems.

We cannow explain why representational reuse markedly improves
learning efficiency (Fig. 3). D>S manifold perturbations compel the
development of newrepresentationsthatre-encode the task’s structure
beyond the original decision subspace—in state space, the structure
and location of these target trajectories are constrained by the arbi-
trarily altered output weights (Fig. 3b, bottom right). However, the
vector field along such an arbitrarily constrained target trajectory
is likely misaligned relative to the vector field required to support it
(Supplementary Fig. 6a, right, purple versus blue arrows along the
learned trajectory). Consequently, it is unlikely to roughly advance
populationactivity along the target trajectory, asit doesinunperturbed
networks (Supplementary Fig. 6a, left). Measurements comparing the
magnitude of the weight-driven VFC in unperturbed and perturbed
networks confirms that the vector field in perturbed networks under-
goes drastic re-organization in comparison to unperturbed networks
(Supplementary Fig. 6b, right), so that they may support new decision
representations (Supplementary Fig. 6a, large orange arrows). This
explains the learning impairment after D->S manifold perturbations
and demonstrates the merits of learning viarepresentational reuse—this
reuse of existing representations limits the requisite weight changes
(Supplementary Fig. 6b, left) and, thereby, improves learning efficiency.

InSupplementary Note1.1.2, we explore the reciprocal interactions
between stimulus and decision representations during trial perfor-
mance and learning. The analysis reveals asecond form of representa-
tional scaffolding by the decisionrepresentations, wherein pre-synaptic
population activity in the decision rather than the stimulus subspace
modulates the weight-driven VFC (Fig. 6¢c and Supplementary Fig. 7d).

Accumulation of weight changes progressively speeds up
learning

In agreement with Harlow’s learning-to-learn experiments, our
model exhibits a progressive improvement in learning efficiency
spanning a few hundred problems (Fig. 1). This is explained by a
progressive decrease in the magnitudes of the weight changes and
weight-driven VFC per problem (Fig. 6a,b). Because the weight-driven
VFC prevents distortions to existing representations during learning
(Fig. 5b), a progressive decrease inits magnitude amounts to a progres-
siveimprovementin the invariance of the existing representations to
learning novel mappings. However, the source of this improvement
is as of yet undetermined: what causes it in the absence of an explicit
meta-learning mechanism? We hypothesized that the accumulation
of weight changes over earlier problems facilitates learning in future
problems. That is, weight changes elicited while learning problems
p -k (for1< k< p-2) cumulatively alter the vector field such that
they suppress the weight-driven VFC required to learn problem p
(Supplementary Fig. 9a, top, and Methods). More generally, as prob-
lems are learned, their respective weight-driven VFCs accumulate to
produce a cumulative VFC, which suppresses the weight-driven VFC
required to learn subsequent problems. This progressively improves
representational invariance and, thereby, accelerates learning.

To test this hypothesis, for each problem p, we measured the
magnitudes of its weight-driven VFC plus the cumulative VFC along
itslearned trajectory due to the accumulation of weight changes over
thesequence of problemsthat precedeit, from problem p — 1 (relative
problem -1) to problem 2 (relative problem 2 - p). Figure 7a summa-
rizes these measurements across many problems p grouped by their
learning-to-learn stage—thatis, the number of problemsthey are pre-
ceded by. Here, we focused on the magnitude along each problem’s
orthogonal weight-driven VFC component (4z,) because it dominates
the total weight-driven VFC in problems at each learning-to-learn
stage (Supplementary Fig. 8b). The results show that, at each stage,
learning earlier problems cumulatively suppresses the weight-driven
VFC required in subsequent problems. We further found that this is
predominantly due to an accumulation of recurrent weight changes
(Supplementary Fig. 8c). These findings confirmed our hypoth-
esis: the accumulation of weight changes over problems progres-
sively improves representational invariance and, therefore, learning
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population activity in the stimulus versus decision subspace to the weight-driven
VFC, averaged over problems 2-51. The magnitudes (L*-norm) of the change
inthe post-synaptic currents and vector field represent their temporal mean
over the entire trial duration, averaged over both mappings in each problem.

The magnitude of recurrent weight changes was measured by their Frobenius
norm. Plotb (plot ¢) reflects mean values (the distribution) over ten networks
with different initial conditions. Error barsinbindicate standard errors. Box
plots within violins in c summarize results across the ten networks (center circle:
median; box bottom/top edge: 25th/75th percentiles; whiskers: minimum/
maximum values). a.u., arbitrary units.

efficiency. Moreover, they imply that the cumulative change along
the orthogonal weight-driven VFC component of problems imposes
alearningefficiency bottleneck.

Figure 7a demonstrates that the weight-driven VFC in a problem
dependsonits net suppression by the preceding problems—that s, the
sum of the suppressive cumulative VFC contributions (and enhanc-
ing cumulative VFC contributions, when they increase the requisite
weight-driven VFC) by the weight changesin each preceding problem
going back to problem 2 (Supplementary Fig. 9b, left, and Methods).
Alarger netsuppression produces asmaller weight-driven VFC. Because
the weight-driven VFC decays exponentially with the number of pre-
ceding problems (Fig. 6b), we posited that the net suppression must
similarly increase with it. Measurements of the net suppression along
the orthogonal and parallel weight-driven VFC components confirmed
this (Fig. 7b). The net suppression mirrors the exponential decayinthe
weight-driven VFC (Methods)—it rapidly increases across problems at
the early stages of learning-to-learn, which produces arapid decreasein
their weight-driven VFCs, and it gradually plateaus for later problems,
which explains the plateauing of their weight-driven VFCs. Also, the net
suppressionis weaker along the orthogonal componentsthanalongthe
parallel components, which explains why the learning efficiency bot-
tleneck develops along the orthogonal components. In Supplementary
Note 1.1.3, we explored the dynamics of this cumulative suppression
mechanismand determined thatit resembles a stochastic process, with
some problems suppressing afuture problem’s weight-driven VFC and
others enhancing it (Supplementary Fig. 10c). However, the process
exhibits abiastoward suppression, which produces the net suppressive
effect. Modulation of this bias governs the learning-to-learn dynamics
and time scale (Supplementary Fig.10d).

Our results identify a novel neural mechanism of accumulating
learning experience to progressively improve learning efficiency,
despite the absence of a meta-learning mechanism. It relies on the
accumulation of connection weight changes over learned problems to
suppress the weight-driven VFC required to learn subsequent problems
and, thus, accelerate their learning. The model progressively acceler-
ateslearningvia (1) agradualimprovementin the efficiency with which
weight changes contribute to the suppression of the weight-driven
VFCin future problems (Supplementary Fig. 10a and Supplementary
Note 1.1.3) and (2) amodulation of how consistently suppressive these

contributions are (Supplementary Fig. 10d). Moreover, the fact that
the weight-driven VFC primarily prevents uncharacteristic represen-
tational changes from developing when learning novel mappings
(Fig. 5) helps elucidate the objective of this learning-to-learn mech-
anism: the accumulation of weight changes over early problems
improves the invariance of the existing representations to having
novel sample stimuli mapped onto them. This refines the model’s
ability tolearnviarepresentational reuse and elicits learning-to-learn.

Discussion

New informationis easier tolearn when contextualized by prior knowl-
edge. This is facilitated by the instantiation of schemas®*, which are
hypothesized to correspond to neocortically encoded knowledge
structures. Learning-to-learn is a constructive consequence of the
reciprocal influence between learning and schema tuning, whereby
schema instantiation facilitates learning, and the assimilation of
learned information into the schema improves its ability to facilitate
future learning. To elucidate the underlying neurobiological basis, we
trained an RNN model on aseries of sensorimotor mapping problems,
without meta-learning. Our main findings are three-fold. First, the
network model exhibits accelerated learning that is quantified by an
exponential time course, with a characteristic time constant and a
plateau. This model predictionis supported by an ongoing experiment
where monkeys displayed an exponential learning-to-learn time course
while solving a series of arbitrary sensorimotor mapping problems
(Peysakhovich et al., unpublished). Second, schema formation cor-
responds to the formation of a low-dimensional subspace of neural
population activity, thereby bridging a psychological concept with a
neural circuit mechanism. Third, rather than weight changes per se, it
isimperative to examine weight-driven changes of the vector field to
understand the behavior of arecurrent neural network as a dynamical
system. These new insights canguide the analysis of neurophysiological
data from behaving animals during learning-to-learn.

Our work revealed that learning-to-learn is a process with three
time scales (Fig. 8). The fastest time scale governs the evolution of
population activity over a single trial. Subspace decomposition of this
activity showed that it encodes three latent variables. First, a mean
decision component that is analogous to the condition-independent
componentidentified in prefrontal and motor cortical activity?”**—it
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encodes temporal aspects of the task ina trial-condition-invariant man-
ner and explains most of the variance in population activity. Second,
aresidual decision component that encodes decisions and response
choices. Third, a problem stimulus representation. The first two com-
ponents collectively constitute low-dimensional decision representa-
tions that control fixation and response choices.

We found that these decision representations are shared across
problems in an abstract form: the model reuses them to contextu-
alize its neural and output responses to new sample stimuli and to
generalize from previous solutions to newer ones. A manifold per-
turbationintervention showed that this reuse causes astarkimprove-
mentinlearning efficiency. Therefore, the network not only abstracts
commonalities across problems but also exploits them to facilitate
learning*'>¥, This shows that the abstract decision representations
constitute the neural basis of a sensorimotor mapping schema*’.
The abstraction of task variable-encoding and task structure-encoding
neural representations and their reuse in consecutively learned asso-
ciation problems has indeed been observed in the prefrontal cortex
and hippocampus''>%,

The intermediate time scale governs the process of learning and
spans the trials between the beginning and end of learning a single
problem (Fig. 8). We studied learning with a novel measure of how
connection weight changes (which model the effects of long-term
synaptic plasticity (LTP)) influence population activityinan RNN—the
weight-driven VFC. We found that this measure is more informative
at assessing the effects of the connection weight changes than direct
measurements of the weight changes: (1) it dissociates the contri-
butions of the changes in different sets of connection weights more
accurately than directly comparing their magnitudes; (2) its assess-
ments are more interpretable, as they directly relate to the population
activity; and (3) itisolates the contributions of the initial weights and
the weight changes to the learning-induced changes in population
activity. For these reasons, these techniques contribute to a grow-
ing set of methods aimed at overcoming the challenges of interpret-
ability and explainability in RNNs***°, which hinder their adoption in
neuroscience. In our analysis, these techniques were instrumental in
identifying (1) why reusing existing representationsimproves learning
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Fig. 8| Learning-to-learnis a process with three time scales. The fastest time
scale (bottom) governs the neural dynamics within a trial that drive output
responses. The intermediate time scale (middle) governs the learning dynamics
across trials within a problem; it ultimately produces the requisite weight-
driven VFC, which results in the problem being learned. The slowest time scale
(top) governs the dynamics of learning-to-learn across problems; it ultimately
improves the invariance of existing representations to learning new problems,
which results in asymptotic learning efficiency. L2L, learning-to-learn.

efficiency, (2) the relative contributions of this reuse versus the con-
nection weight changes to learning and (3) the mechanismunderlying
learning-to-learn.

In the training RNN framework, the network is initialized with
random weights, as a blank slate. In contrast, developmental experi-
ence shapes how new information is encoded even in the brain of a
task-naive animal. This confounds direct comparisons between the
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use of a learning algorithm and a known biological plasticity rule.
Nevertheless, our findings regarding the benefits of representational
reuse do not directly depend on our model’s learning algorithm and
may well be conserved under biologically plausible learning rules.
Moreover, because our analysis techniques are independent of the
underlying learning rules, they offer an approach to study learning
and the properties of schema formation and reuse in models with
biologically plausible learning rules. Our model further assumes that,
after schema formation, new problems continue to be learned via
LTP.Indeed, rapid learning of novel schema-consistent paired associ-
ates is prefrontal NMDA receptor dependent in rodents*’, suggest-
ing that Hebbian neocortical synaptic plasticity is likely involved in
schema-facilitated learning. However, the role of other forms of plastic-
ity, suchasintrinsic* and behavioral time scale** plasticity, has notbeen
experimentally precluded. Further computational and experimental
studies are required to determine their relative roles in this process.

At the slowest time scale, several problems are learned in suc-
cession with progressively improving efficiency, until asymptotic
efficiencyisrealized (Fig. 8). Thisis the time scale of learning-to-learn.
We showed that, consistent with macaque monkeys’ behavior”, our
model’strials to criterion performanceis well characterized by a decay-
ing exponential function, which asymptotes at roughly 20 trials per
problem. Consequently, our model suggests that learning-to-learn
canemerge in animal models in the absence of explicit meta-learning
(Supplementary Discussion1.2.1).

We identified a novel mechanism for learning-to-learn, which
relies on the accumulation of weight changes over learned problems
to progressivelyimprove the invariance of the existing representations
to subsequent learning. An increase in this invariance suppresses the
weight-driven VFCs required to learnnew problems, which accelerates
their learning. Interestingly, these cumulative improvements are sto-
chasticinnature—the exponentialimprovementinlearning efficiency
stems from a modulation of the bias in this stochastic suppression of
the weight-driven VFCs in future problems. These results also differ-
entiate between schema-facilitated rapid learning and structure learn-
ing, which theorizes that the progressive learning acceleration arises
from a refinement in the neural control of behavioral parameters”
(Supplementary Discussion1.2.2).

Crucially, our results offer experimentally verifiable predic-
tions. First, the sensorimotor mapping schema is encoded by
low-dimensional neural representations, which are shared across
problems, and explain most of the variance in population activity.
They encode shared task variables, including the task’s temporal
structure and the available choices. Second, the reuse of these rep-
resentations to learn new problems speeds up learning; prevent-
ing this reuse with recently developed BCl interventions® should
produce pronounced learning deficits. Third, population activity
may undergo marked changes between the beginning and end of
problem learning. However, across problems, these changes are
restricted to alow-dimensional subspace of the activity. Fourth, the
number of trialsto learn a problem decreases exponentially with the
number of previously learned problems. Taken together, our results
provideinsightsinto the neural substrate of a sensorimotor mapping
schema, the reason for which its reuse markedly improves learning
efficiency, and the neural mechanisms of structure learning that
givesrise to learning-to-learn. In doing so, they elucidate the neural
mechanisms of learning-to-learn and present novel techniques to
analyze learning-to-learnin RNNs.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods
RNN model
The RNN model comprises afully connected population of Nfiring rate
unitswith firingratesr, receiving inputs from N,,input units with firing
rates u. Firingrates of the network units follow the dynamical equation:

T = =t + f(Wiu + Wiecl + bpec + )
. (o)
T('(Z -+ 21’(0?“.{'

which expresses the leaky and non-linear integration of input (W;,u) and
recurrent (W, r) currents. W, (W,,)isan N x N,, (N x N) matrix of input
(recurrent) connection weights, and r=100 msistheintegration time
constantthat characterizes the slow decay of NMDA-receptor-mediated
synaptic currents®’. The f-I curve is modeled by asmoothrectification
function:

[0 =log(1+e)

Thebias termb,..admits per-unit firing thresholds. Intrinsic back-
ground noise current is modeled by an Ornstein-Uhlenbeck process {
with time constant 7;and variance o,.., where § represents the underly-
ingindependent white noise process with zero meanand unit variance.

Output responses are readout from the activity of the RNN units
by N, output units, y, whose activity is given by

y= g(Wautr + bout)

Here, W, is an N, x N output weight matrix; b, is the bias of the
output units; and g(x;) = exp (x;)/ Z}Vz”;‘ exp (x;)is the softmax or normal-
ized exponential function, which produces output unit activity that
indicates the probability of generating each of the N,,, response
choices.

The modelis simulated by temporal discretization of Eq. (1) with
Euler’s method as

re=0-ar_; + af(u/inut + Weecte1 + brec + (t)
(2)
&= (1 - (X() G t+ Za(atz‘ecN ©,h

where the time-discretization step size is 4t, a = At/t, a;= At/t,, and
N (0, his arandom vector sampled from a Gaussian distribution with
zero mean and identity covariance (/). In all figures, the network size
N=100, At=1-ms, 7;=2'ms and g,.. = 0.05. The magnitude of the net-
work unit and input unit firing rates is measured as the L*norm of r,
and u,, respectively, and summarized by averaging over all time points
inatrial.

Task structure

We trained the network model on a series of delayed sensorimotor
association problems, one at a time. In each problem, the network
learned a one-to-one correspondence between a pair of sample stimuli
anda pair of motor responses. Each problem, therefore, comprised two
trial types, one per stimulus-response pair. Each trial was 2 seconds
in duration (7= 2) and started with a 500-ms sample epoch, followed
by al-second delay epoch and ended with a 500-ms choice epoch.
During the sample epoch, the network concurrently received inputs
representing afixation stimulus and one sample stimulus. During the
delay epoch, it continued to receive only the fixation input. It received
noinputs during the choice epoch. The model was required to maintain
fixation during the sample and delay epochs and choose the appropri-
ate motor response during the choice epoch. The model contained
three output units (V,,, = 3), two toreport response choices and one for
fixation. This trial structure, including the available response choices,
remained fixed across problems.

Sample stimuli were represented by ten-dimensional unit length
vectors (L>norm =1). The two sample stimulus representations in a
problem were drawn from a random Gaussian distribution with zero
mean and identity covariance. They were then orthogonalized to avoid
learning efficiency confounds stemming from the relative difficulty in
learning to distinguish between more versus less correlated sample
stimuli. The fixation input was ascalar with value 1/4/N;, — 1whenit was
onand zerowhen off. Therefore, there was atotal of N;, = 11input units.
Learning-to-learn was robustly observed even in the absence of the
orthogonalization step; however, the variance in learning efficiency
was higher. Qualitatively similar learning-to-learn performance was
also observed with 200-dimensional sample stimulus representations
and N=1,000.

Each problem was learned over a sequence of trials, pseudoran-
domly sampled from the two trial types, until the average error on 50
consecutivetrials fellbelow acriterion value (see the ‘Network training’
subsection). The learning efficiency for a problem was measured by
thenumber of trials required to achieve this criterion. After aproblem
waslearned, the model was transitioned to the next problem, wherein
itlearned to associate anew pair of pseudorandomly selected sample
stimuli with the two motor responses.

Network training

A network was trained on a problem by updating its connection
weights (W,,, W,..and W,,,), biases (b,.. and b,,,) and initial network
state (r,), so thatit could choose the desired response for each of the
sample stimuli. These updates were generated by stochastic gradi-
ent descent—an optimization algorithm that incrementally updates
anetwork’s parameters at the end of each trial, based on the errorsin
the outputunitresponses during the trial. In contrast to standard RNN
training practices, wherein model parameters are adjusted based on
theaverage error from abatch of several trials and learning efficiency
is measured by the number of trial batches to reach criterion perfor-
mance, our training procedure closely matched established animal
training protocols and allowed learning efficiency to be measured
by the number of trials to criterion performance. The backpropaga-
tion through time (BPTT) algorithm was used to resolve temporal
contingencies while computing parameter updates. We additionally
applied the Adam optimizer** to enhance the efficacy of the updates.
All networks were trained with a learning rate of 10™, except in Sup-
plementary Fig. 1 where the learning rate was systematically varied.
Adam decay rates for the first and second moment estimates were set
to 0.3 and 0.999, respectively, and the moment estimates were reset
at the beginning of each problem. The model implementation and
parameter update computations were performed with TensorFlow*
in the Python programming language and supported by the Numpy
numerical computinglibrary.

Before the first problem, a naive network’s input weights in W,
wereinitialized with random values drawn froma Gaussian distribution
with zero mean and variance 1/N,,; the recurrent weights in W, were
initialized with random values constrained by householder transforma-
tions such that the rows (and columns) of the initial recurrent weight
matrix were orthogonal to each other and of unit length*. Initializing
therecurrent weights in this manner allows gradients to be backpropa-
gated more effectively. All other network parameters were initialized to
zero. Upontransition to a new problem, all parameters retained their
values. Atinitialization and throughout learning, the sign and sparsity
of the weights and biases were not constrained. The initial network
state was always restricted to non-negative values.

Network training was performed in asupervised setting, wherein
the parameters were adjusted to minimize an objective function, £,
thatincluded the errorsin the model’s output responses:

Noue

Z —Yilog (Vir)

mask =1

1

Lopp = ——
“r T—- |Dmask| teD,
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Theerror ateachtime step t was given by the cross-entropy of the
probability distribution over responses generated by the network, y,,
relative to pre-specified target responses, y,. The total error for atrial,
L. Was the mean of the per-time-step error taken over the trial dura-
tion 7. This excluded amaskinginterval, D, set to the first 100 ms of
the choice epoch, which allowed for flexible reaction times. Networks
were considered to havelearned a problem when the average £, over
50 consecutive trials of the problem fell below a criterion value
of 0.005.

The objective of the training procedure was to minimize the sum
of this error and auxiliary regularization terms:

L= Lerr + Lreg Wi, + LregWoue T LregWyee+Lreg race

Theregularization termsincluded both weight and activity regu-
larization to encourage solutions that generalized well*** and gener-
ated stable network dynamics. We imposed L? regularization on the
input and output weights as follows:

l;Wm Nin N

’Creg,W,,, = N- N ZZ (M/m (/ ’))

i=1j=1

N N,
'Bwom lout

20 Woue G iy’
NowcN

i=1 j=1

Lreg~Wout =

We observed that networks with a similar L regularization of the
recurrent weights were sensitive to the value of meta-parameter gy, _,
particularly when the network size was large—small values of g,
produced unstable network dynamics during later problems, whereas
large values hindered learning efficiency. The squared Frobenius norm
of the recurrent weight matrix, which constitutes such an L *regulariza-
tion, isgiven by:

ZZ(Wrec(/ D)’ —ZU

i=1j=1

where g;is the i-th singular value of the recurrent weight matrix W,..
An analysis of these singular values under conditions that led to
unstable network dynamics revealed that their L-norm (that is, the
square root of the righthand side of the equation above) remained
roughly fixed over the course of learning several problems; however,
their distribution changed considerably across problems—smaller sin-
gular values shrank, whereas larger singular values grew and ultimately
resulted in unstable network responses to novel sample stimuli. We miti-
gated thisby introducing an alternate form of recurrent weight regulari-
zation that penalized the magnitude of the first ksingular values of W,

k
Wrec
Lreae = g 2%

Finally, we imposed a homeostatic firing rate regularization:

creg,rate = ﬁr

1 N
ert:z;’iz,r_h}
=

The meta-parameter h was set to zero for the first problem, effec-
tivelyimposingan L?regularization of the recurrent unit firing rates as
thefirst problem was learned. To avoid unrestrained growth or reduc-
tionin thefiring rates while learning subsequent problems, the homeo-
static setpoint hwas thenset to the mean squared firing rates averaged
over the last 50 trials of the first problem. All networks were trained
with By, =104 By, =01, By, =01k=10and B,=5x107* exceptin
Supplementary Fig. 1, where these hyperparameters were systemati-
cally varied.

Learning-to-learn performance characterization

A network’s learning-to-learn performance (Fig. 1) was characterized
by fitting a decaying exponential function to its number of trials to
criterion [(p) on problem p, as a function of the number of learned
problemsp —1:

l(p)=s exp(#l_l)>+a,

Here, q, represents asymptotic learning efficiency; 7, represents the
time constant to achieve this asymptote; and s, represents theimprove-
ment in learning efficiency between early and late problems. A large
asymptote signifies poor learning-to-learn, whereas alarge time con-
stantsignifies slow learning-to-learn. The three parameters of the func-
tion were fit with the Levenberg-Marquardt algorithm implemented
by the £it function of MATLAB'’s Curve Fitting Toolbox. As a validation,
these fits were compared to a moving average of the number of trials
to criterion, calculated by MATLAB’s movmean function, with awindow
size of 30 problems. The learning efficiency on the first problem was
excluded from this analysis.

Subspace decomposition

We performed semi-supervised dimensionality reduction onthe popu-
lation activity, to determine how strongly and consistently the shared
task structure is represented across problems (Fig. 2). First, we com-
piledatensor Ry,;;of activity patterns generated by the population of
firing rate units (k € [1,N]) over time (¢ € [0,T]), for the two response
types (j € {response;, response,}) across a group of 50 consecutively
learned problems, (i € [p + 1,p + 50]). Next, a semi-supervised dimen-
sionality reduction extracted decision representations that are shared
by the group as follows. Stimulus-specific and problem-specific rep-
resentations for each response type are averaged out, or marginalized,
across problemsin the group:

Ry =< Rieji >i

Principal component analysis was performed on a concatenation
oftheresulting two trajectoriesin R, .; . Theloading vectors for the first
mprincipal components were collectedintoan N x mloading matrix L.
These vectors defined a basis for the decision subspace. To ensure that
the decision subspace fully captured shared decision representations,
the marginalized trajectories were not de-meaned before performing
principal component analysis. Here, we set mto 4, as the first four prin-
cipal components collectively explained at least 98% of the variance in
the marginalized trajectories, in all the networks that we analyzed.

Next, an N x N projection matrix P (Q) that projects population
activity intothe decision subspace (stimulus subspace) was defined as:

P=Lpl]

Q=1-°P

where/is theidentity matrix. The decision components of the learned
trajectories for problem p +x (x € [1,50]) were identified as:

N
d
Rkl,t,j,i=p+x = Z P (KL K2) Ry tji=p-+x
k2=1
and their stimulus components as:

Z Q (kl k2) sz Lt i=p+x

kl SLji=p+x

where P(k1, k2) and Q(k1, k2) represent the elementin the k1-th row and
k2-th column of the respective projection matrices. The decision
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components were further decomposed into mean (Rd’"

. s k,t,j,i:p+x) and
residual (R"’ )decnsnon components as:

k,tj,i=p+x
dm — d .
kit,.i=p+x =< Rk,t,/‘,i:p+x >j
dr _ pd _ pdm
Rk,tJ,i:p+x - Rk,t,i,i:p+x kit,.i=p+x

(v=€{s,dm,dr})

to an output unit o was computed as ¥y_ W2 (0,k) Ry (ji=pex Where

W’ is the output weight matrix learned in problem p + x. The

out

dimensionality of any set of vectors (for example, population
activity in the stimulus subspace) was approximated by its participa-

2
tion ratio*’, computed as (g—? where 4; is the i-th eigenvalue of

2

The netcurrent fromthese componentsR, ..
S i=p+X

A
the covariance matrix of the vectors.

Manifold perturbations

To assess whether reuse of the decision representations improves
learning efficiency, networks were trained on their second problem
while constraining them in a manner that required the formation of
new decisionrepresentations. The learning efficiency of such networks
was compared to controls that were allowed to reuse existing decision
representations while learning their second problem (Fig. 3).

A naive network was first trained on 50 problems, and the corre-
sponding populations trajectories were used to identify its decision
and stimulus subspaces. All network parameters were reset to their
values at the end of the first problem. Then, its output weights were
perturbed, and the network was trained on a new problem—that is, a
second problem with respecttoits parameters while barring the train-
ing procedure from changing its output weights. This procedure was
repeated 50 times for each network, resetting its parameters, applying
anindependently chosenrandom perturbation toits output weights,
freezing the output weights and training the network on anew sample
stimulus pair each time. The output weights were subjected to one
of three forms of perturbation. In the frozen readout condition, the
output weights were unperturbed after the parameter reset. In D>S
manifold perturbations, after the parameter reset, the output weights
were perturbed toreplace the overlap between the network’s readout
and decision subspaces with a corresponding overlap between its
readout and stimulus subspaces:

4 4
- D D" DS’
Wout,D—>S = Wout - z Woutli Ii + Z Woutl- I
i=1

i=1 1o

where W, p_.s is the perturbed output weight matrix; (lf) isthe i-th
principal component loading vector of the decision (stimulus) subspace;
and o() represents a random shuffle or permutation of the stimulus
subspace principal component loading vectors. InS->S manifold pertur-
bations, after the parameter reset, the output weights were perturbed
to permute the overlap between the readout and stimulus subspaces:

4 4

— Sys” Sys”

Wout,S—rS = Wout - z Woutli Ii + Z Woutli Ia(i)
i=1 i=1

Weight-driven and state-driven VFCs

Over the course of learning problem p, the model’s parameters
change from their values at the beginning of the problem—that is,
their pre-learning values (W2, w5, bf!, wh !, b2 and r27') to
their values at the end of the problem—that is, their learned values
(W2, Woee, Blee, Wh,., bE and rf). The difference between the learned
and pre-learning values of the parameters quantify their change
due to learning problem p (AWY, AW, , AbL,, AWS,, AbD  and Arp)

rec’ rec’ out’ out
and are collectively referred to as AW”.

Here, we presentresults relating the changesin these parameters
to changes in the population’s activity and dynamics. Although the
resultsare presentedin the context of temporally discretized dynamics,
they may be readily extended to continuous time dynamics. Dueto the
parameter changes, the populationactivity in response toinputs uf is
altered from its pre-learning levels, r;? ; . to its learned ones, ry_, 1.
(Fig. 4c, left). We derive an expression for this change in population
activity, ZEE[O,TJ’ in terms of the parameter changes. Based on the
time-discretized model Eq. (2), we have:

— P _ P
Zt_rt rt

= [(1 —ar  + af(Wﬁzuf + Wt + b'r’ec)] -

[A-arP +af(Wo ul + W IrP 1+ B8]

rec "¢—1

in~t

a-rP +F (W ul + Wi+ bR

rec “¢—1 rec

= [rf—1 - r;lil] +a [_rf—1 +(Woug + Wier? | + bEeC)] -

= [rf—l - r;gl] +a [_rf—l +f(M uf + l’V;r’ec"fA + bfec)] -

in"t

al-rP, +f(l/1/;’n_1u{J + WP 4 b""l)] +

rec “¢—1 rec

af-r? | +f(an_1uf + WP 4 b,'.";l)] -

rec "¢—1

p —1_p p-1
¢t erc .t brec )]

al-r? 4 (W

Rearranging the terms, we have:

=20 +
al{-rp, +F(We uE + Wi + bR - (3)
{2y (W g + Wi+ bR +
af(Wouf + Wieery +blec) —F(Wh, Wl + Wocr, + bR

This expression shows that the change in population activity
emerges from an accumulation of activity change increments, Az}
(Fig. 4c, center):

ALl =170 -20 | 4)

These increments are composed of two terms:

Az} = AField?, + AField),, ®
The first term, AField?,, expresses the difference in the
pre-learning vector field at the positions in state space along the
learned (r? )and pre-learning (r ) trajectories (Fig. 4d, left). It is
referred to as the state-driven VFC:

AFieldy, = a[{-r?, +F(W]u? + Wi+ bR}
(oo, (WP + WP 4 b

in 't rec “r-1

(6)

The second term, AField}, , expresses the change in the vector

field at population states along the learned trajectory due to the param-

eter changes (Fig. 4d, center, and Fig. 4b, right). It is referred to as the

weight-driven VFC:
AFieldy, = a[f(W) uf + W,

in”t ec

 +bh) (W el + WD bR

rec mn t rec “t—1 rec )]
7

The weight-driven VFC stems from the change in the net afferent
currents to the population, ACurrent:’w duetothe parameter changes
(Fig. 4b, left):
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AField), , = a[f(
=alf((

+(ble + AbR)) — (W2 u
= alf(Wo luf + Wl + bl NE
S g + Wiled + bR

mn t

+ WP 1 bP 1)]

rec “¢—1 rec

Woul + WoxP 1+ bl) f(Wf;
W+ A n) (W" + AW 1
+ Whee

n rec
ec I‘f 1 + bp 1)]

rec

+bP 4 ACurrentp

(8

where ACurrent),  is determined by AW, AW, and Abf, as:

rec rec
ACurrentp = AWO Ul + AWL XY | + Abj,, ©)

The change in initial population state is defined as
Az = Arf = r? —r?7\. We omit the contribution of this change from
our analyses as lt consistently showed a negligible effect on the
evolution of the learned trajectory and the activity changes, across
all problems and networks tested.

The contribution of the two VFC terms to the activity change
increment, Az!, was measured by their magnitude along, or in
the direction of, Az (Fig. 5a). This was computed by vector projec-
tion as:
= AFleIdp

|AFtel | Azf

where p € {w,s}, represents the dot product operator, and Zz\:’ is
Az ) Therefore, the

Az"”
“ tli2

the unit vector in the direction of Az} (Zz\f =

VFCalong AzPis given by:

AField” |AField |, Zz\f (10)

tA"_

The remainder of each VFC term represents its components
orthogonalto Az] (Fig. 5a):

AField) ,,» = AFieldy , - AFIeId::tAzp a

To compare therelative direction of the orthogonal components
of the weight-driven and state-driven VFCs (Fig. 5a), we arbitrarily
(but without loss of generality) chose the direction of AF'eldstsz

as the reference—signed magnitudes were computed by vector

projection of AFleld"tA » onto a unit vector in the direction of

P
AField e

The magnitude of change in the input and recurrent connec-
tion weights was measured by their Frobenius norm,

HWP - WHHF = \/ZU(WP (i.j)— Wp-1(i.j))" . Supplementary Methods
1.3.1 describes how we evaluate the contribution of changes in indi-
vidual parameters (for example, input versus recurrent connection
weights or recurrent weights from the decision versus stimulus sub-
space) tothe changein the weight-driven VFC and thereciprocalinter-
actions between decision and stimulus representations in sustaining
thelearned population trajectories.

Effects of weight change accumulation across problems

We measured the contribution of the weight changes elicited while

learning problem p — k(AWP=*,for1 < k < p — 2) to the cumulative VFC

along the learned trajectory for problemp (AFielde;k"’) as:
AField}, = a[f(Woup + Wik

p-k
rec t 1 brec )_

p—k-1.p —k—1.p p—k-1 42)
f(W up+ W Tt +b )]

rec

Then, the cumulative VFC due to the accumulation of weight
changesacrossall thelearned problems from p — kto p — 1was givenby:

Yy, AField} 7 = a[f(Wo uP + Woe? | + bR~
f (W" R T Y Lo

k-
t rec bl?ec l)]

The magnitude of cumulative VFC along the parallel (Az ) and
orthogonal (Az') components of the VFCfor problem p were computed
via vector projection of the cumulative VFC onto unit vectors in the
direction of the VFC components. Specifically, given that the vectors

. P . p T . . .
AFleIdw’t‘Azﬁ(AFleldw,tN,I) arenearly one-dimensional across trial time

13)

twithin problem p (Fig. 5¢), we applied principal component analysis
to find a single basis (unit-norm) vector, AF/iel\d:,,e,Azﬂ (AF/iel\d:,,e,Azi),
that accurately represents their shared direction during each
non-overlapping 250-ms epoch, e, of the trial. The magnitude of the
cumulative change along the parallel/orthogonal VFC component was
givenby:

‘ijzl AField Y| =

k i __—p
‘(ZH AField?, tw> . Arieldw,e,hﬂ‘ (14)

where u € {||, 1}, and time ¢ lies within the interval of epoch e. The
magnitudes of cumulative VFC contribution by individual problems

along the parallel/orthogonal VFC component <|AField’;);k’”|Azp)
were computed similarly. g

The signed cumulative VFC and per-problem cumulative VFC
contributionsin Supplementary Fig.10c were calculated as above but
without taking the absolute value on the righthand side.

The per-trial magnitude of the cumulative VFC contribution by
| AField;;

(p—_)", wherel(p - k)
is the trials to criterion for problem p — k. The sum of the magnitudes
of the cumulative VFC contributions to problem p was calculated as

p-2 3
P | AField,”

problem p — ktoproblem p was calculated as

Az

The magnitude of net suppression of problem p’s weight-driven
VFC along its parallel/orthogonal component is defined as the net
suppressionin the direction of the corresponding component due to
netweight changes between the start of problems 2 and p. It was com-
puted from the total VFC along the learned trajectory for problem p
since the start of problem 2. Let AFieldy; " represent this total VFC at
timet:

total p

AField,) Z AField}; g AField},

j=1

Then, the total change along the parallel/orthogonal VFC com-
ponent was given by:

F“";’pr = Al-'leldtotal P AFleIdweA,n

We applied a sign correction to this quantity to ensure that its
temporal meanis always positive. This allowed us to accurately calcu-
late the net suppression. After sign correction, AF:/"[‘IZ;’ becomes:

k]

~ total,p

o 1, L,
AF a2 = s8N (Af“’“’ 7 )AF‘ZT p

where AFZ"“’A”’ZJ, represents the temporal mean of AFZ‘/"“"” over time ¢
withina trial, ahd sgn() represents the signum function. Similarly, the
weight-driven VFC for problem p along its parallel/orthogonal com-
ponents was given by:
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AP

——P
hoaz = AFieldy, - AFieldy e

Then, the magnitude of net suppressionalong the parallel/orthog-
onal VFC component for problem p was:
~ net,p ~ total,p

AFypnz = AFypnz — AF

w,t,Az"‘; 15)

The progression of this quantity over the learning-to-learn time
course can be described in terms of the number of previously learned
problems. We note that the temporal mean of the magnitude of the

weight-driven VFCalongits parallel/orthogonal component (AFZ A z,,)

decays exponentially from problem 2 onwards untilan asymptotic value
b, is converged upon (asin Fig. 6b). This decay may be expressed as:

A e G A [
foranappropriatebase r, < 1. Taking the temporal mean of Eq. (15) over

trial time ¢, we have:

~ net,p ~ total,p

AFw,.,Azﬁ = AFw,.,Azﬂ - AFZ/,.,Azﬂ
~ total,p

= AFy A2 — (AFZ,.,Azz —b,+ b,,)
~ total,p

= AFy, a2 - (AFZ,A,M;: - b") = b

~ total,p 5 —2
=AFy a2~ (AFWNAZi - b,,) r—b,
Rearranging, we have:
~ net,p ~ total,p —2
Ay iy = (AFL,,WAZ;; - bﬂ) - (A,ﬂw,_,mi - b,,) o~ (16)

This equation expresses the progression of the magnitude of net
suppression over the learning-to-learn time course and determinesits

shape as a function of the number of previously learned problems
~ total,p

(Fig. 7b). Note that, when the first term (AFH,,_,AZL) - b,,) is roughly

constant across learning-to-learn stages (as we found by measure-
ment), the magnitude of net suppressionis givenby aninverted expo-
nential function.

Finally, we determined the relative contributions of the cumulative
input versus recurrent weight changes to the cumulative VFC along the
orthogonal VFC component (Supplementary Fig. 8c). Todo so, we calcu-
lated the cumulative VFC for problem p solely due to the accumulation
of input weight changes elicited by previously learned problems as:

k .
3, AField) P

Win,t
j=1
_ PP P P p p—k-1_p P P p
=a [f(Wmut + Whrd  +bl) —f(Wm ul + WEP 4 brec)]

The cumulative VFC solely due to recurrent weight changes was
calculated similarly. Both quantities were then projected onto the basis
vector for the orthogonal VFC componentsin problem p (asinEq. (14)),
to compare their contributions along this component.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Data files, including pre-trained networks, are available for further
analyses on GitHub (https://github.com/xjwanglab/learning-2-learn)
inPythonand MATLAB readable formats.

Code availability
Alltraining and analysis codes are available on GitHub (https://github.
com/xjwanglab/learning-2-learn).
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